

On Evolutionary Algorithms for Evolving Code in a Closed Context

Michael Cassar

June 2014

Submitted to the Malta College of Arts, Science and Technology institute of

Information Technology in partial fulfilment of the requirements for the

Bachelor of Science (Honours) in Software Development

1

AUTHORSHIP STATEMENT

This dissertation is based on the results of research carried out by myself, is my own

composition, and has not been previously presented for any other certified or uncertified

qualification.

The research was carried out under the supervision of Mr. Andrew Cortis.

Signed ____________________ Date ____________________

3

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my family for their attention, undivided support, and

dedication throughout this stressful year, words cannot express how grateful I am to you all. I

am however, especially grateful to my sister Francesca, who through constant annoyance, has

always found a way to make me laugh and keep my spirits up whenever I needed it the most.

After thanking my family, I would like to express the deepest appreciation to my dissertation

tutor, Mr. Andrew Cortis. In addition to helping me in this dissertation, whenever any help

was required at any moment, Mr. Cortis has also taught me a vast number of skills that have

improved my programming knowledge dramatically. During this dissertation, Mr. Cortis has

not only aided me, but has inspired a substantial level of adventure and enthusiasm with

regards to implementing it, and also with regards to programming in general. In addition to

the above, he also provided me with the genetic algorithm framework that he had built, which

has helped me greatly, as it pretty much forms the foundation of this dissertation. Without his

supervision and continual help, this dissertation would not have been possible. I would also

like to thank Mr. Andrew Cortis for introducing me to Data Structures and Algorithms, his

lectures have taught me a great deal and I hope that his teachings inspire future students as

they have done me.

I would also like to take this opportunity to thank a two other lecturers, who throughout the

year have been of significant support and that have both directly and indirectly contributed to

my dissertation by improving my skill set and knowledge:

 I would like to thank Mr. Ryan Attard, for introducing me to Secure Software

Development, in addition to fuelling my passion for Programming, Web

Architectures, SQL, and Non-Blocking Asynchronous patterns.

 I would like to thank Ms. Christine Dimech, for proving how wrong I was, when I

initially thought that I would never be good at Mathematics. In addition to improving

my Mathematical background, she has shown me that I can achieve anything that I

work hard at achieving.

4

TABLE OF CONTENTS

AUTHORSHIP STATEMENT 1

COPYRIGHT STATEMENT 2

CONTACT ADDRESS 2

ACKNOWLEDGEMENTS 3

ABSTRACT 6

1 INTRODUCTION 7

1.1 OVERVIEW 7

1.2 BENEFITS 7

1.3 KEY CHAPTERS 8

1.3.1 LITERATURE REVIEW 8

1.3.2 METHODOLOGY 9

1.3.3 RESULTS 9

1.3.4 FUTURE WORK 9

2 LITERATURE REVIEW 10

2.1 AN OVERVIEW OF GENETICS 10

2.1.1 THE GENOME 10

2.1.2 GENOMIC EVOLUTION 10

2.1.3 GENETIC DISORDERS 12

2.1.4 SURVIVAL OF THE FITTEST 13

2.2 DIFFERENT GENETIC ALGORITHM APPROACHES 13

2.2.1 ELITISM 13

2.2.2 SIMULATED ANNEALING 13

2.2.3 ADAPTIVE SIMULATED ANNEALING 14

2.2.4 TABOO SEARCH 14

2.2.5 DIFFERENCES BETWEEN GENETIC ALGORITHMS AND EVOLUTIONARY ALGORITHMS

 15

2.3 APPLICATIONS OF GENETIC ALGORITHMS 15

2.3.1 PANCREATIC CANCER DIAGNOSIS 15

2.3.2 ARTIFICIAL CREATIVITY 16

2.3.3 SPACECRAFT ANTENNAE 16

2.4 APPLICATIONS OF CODE EVOLUTION USING GENETIC ALGORITHMS 17

2.4.1 CODE OPTIMISATION 17

2.4.2 AUTOMATED SOURCE CODE EVOLUTION 17

3 METHODOLOGY 19

5

3.1 IMPLEMENTATION 19

3.1.1 CORE WAR 19

3.1.2 GENETIC ALGORITHM FRAMEWORK 19

3.1.3 PROGRAM ENVIRONMENT 19

3.1.4 ELO RATING 20

3.1.5 GRAY CODE 20

3.1.6 CONCRETE GENETIC ALGORITHM 21

4 RESULTS 25

4.1 OVERVIEW 25

4.2 GENERATED PROGRAMS 25

5 FUTURE WORK 34

5.1 PERFORMANCE IMPROVEMENTS 34

5.1.1 UTILISING NMARS LIBRARIES 34

5.1.2 PARALELLISM 34

5.1.3 FUNCTION IMPROVEMENT 35

5.2 RESULT IMPROVEMENTS 35

5.2.1 TWEAKING GENETIC ALGORITHM SETTINGS 35

5.2.2 DIFFERENT GENETIC ALGORITHMS 36

6 CONCLUSIONS 37

6.1 INFORMATION YIELDED 37

6.2 RESULT SUMMARISATION 37

6.3 RESULT USAGE 38

7 REFERENCES 39

6

ABSTRACT

Evolutionary algorithms are used in many situations where complex, abstract, and or hard to

achieve solutions have to be found. Some applications are: cancer diagnosis; artificial

creativity; and spacecraft antennae design. Genetic algorithms are a subset of evolutionary

algorithms that utilise Darwinian Evolution Theory principles such as splicing; mutation; and

cross-over functions, to evolve genomic sequences that represent solutions to a given

problem.

Core War is a programming game, in which two or more programs are executed in a

sandboxed memory battle, where the aim of each program is to terminate the other’s process.

An application was built to evolve Core War programs using genetic algorithms for the

purpose of searching for improvements on the original programs. By making use of an Elo

Rating system, the fitness of each generated program is evaluated, one generation after

another. To calculate a program’s rating, the program is battled against other programs to

measure their wins, ties and losses. The updated Elo Rating is then used to determine which

programs are discarded or saved and carried over to future generations where they can

continue to evolve. The Elo Rating is reset after every generation, to prevent programs

carried over from previous generations from having high Elo Ratings that dominate the new

generation, and do not give new programs the opportunity to be carried over. The particular

genetic algorithm approach taken is based on simulated annealing, but also makes use of

elitism and the taboo search meta-heuristic, all of which are designed to improve searching,

speed, and the quality of the evolved Core War programs.

Results show, that generated programs are able to be evolved properly, and can be more

effective than some standard programs when tested in the actual nMars IDE. Improved

results can be obtained by improving the speed of execution of the algorithm, through

practices such as parallelism, different parsing techniques, and by adjusting the genetic

algorithm searching process.

7

1 INTRODUCTION

1.1 OVERVIEW
The main aim of this dissertation is to evolve program code via evolutionary practices, in

order to possibly generate a fitter program for a particular task. In this case, the code is that of

a warrior, pertaining to Core War, a programming game, where the aim of the game is for

programs, called warriors, to compete against each other in the hopes of terminating each

other’s process within a set amount of rounds, battles are categorised via a Win/Tie/Loss

scale after the rounds are complete. The application built, uses a Genetic Algorithm, to carry

out selection, mutation and cross-over processes on a particular genome, in this case, the code

itself. Immutable programs (unchanging and non-evolving, pre-defined programs that already

exist) are used in order to act as opposing programs to the programs generated by the

algorithm and also as a basis for new programs. A fitness function is also used to rate

programs, to estimate how effective the Genetic Algorithm is in terminating the immutable

program’s process in each generation. The programs will duel one another by being loaded as

text files into the CMD, which will make use of the nMars.NET Console Application, which

contains a Core War compiler, to be able to carry out the battle rounds and save result files

for further use within the application for further analysis.

1.2 BENEFITS
The benefits of this dissertation and the research carried out include an analysis and

demonstration of how Evolutionary algorithms can attempt to solve programming problems

that have no known solution or have very complex, abstract or dynamic solutions, including

how well they perform against the given problem.

There are various problems that can be solved using evolutionary algorithms. A few benefits

that are brought about are:

8

 Distributed systems and distributed computation are vastly improving, which means

that future applications of this dissertation may be used to solve far more complex

problems, in a different context, by applying similar techniques but utilising more

processing power, making use of more than one system to tackle the issue at hand.

 While still retaining the same scope, the problems that are being solved may change

over time, and require a different solution in order to be correctly and efficiently

solved. In practice, this might cause the solution that has been built to have to be

removed and re-implemented, or involve a lot of restructuring, especially in the case

of legacy code, or where the original developer is no longer working on the project.

This dissertation will show this by determining how evolutionary algorithms can

evolve source code to solve the task at hand, even if the solution to the problem is

changed - in this case, by having the generated program battle other programs in

addition to the original immutable program.

 The dissertation also demonstrates how evolutionary algorithms perform self-

optimisation techniques via their fitness function. In spite of the fact that the fitness

function must be tailored to the problem the algorithm is trying to solve, by

substituting the area the evolutionary aspect will be used by another, the same

concepts of fitness, whilst modified for the specific application, can be utilised to

perform searches in different contexts.

1.3 KEY CHAPTERS

1.3.1 Literature Review

The Literature Review analyses the work carried out in related research, and provides the

necessary background for the dissertation. The literature review contains information on

genetics, genetic practices applied to algorithms, and the application of genetics in

computation.

9

1.3.2 Methodology

The methodology includes information about the research carried out in this dissertation, and

the application implemented. The focus of this information is on the programming concepts

and the applied information and research from the literature review, which includes any

changes or modifications made, to make the dissertation program function as it should.

1.3.3 Results

In this chapter results and findings are presented and analysed, including comparisons and

samples of generated programs and the explanations of these generated programs.

1.3.4 Future Work

This chapter presents, analysis and review conclusions to list any modifications that should

be done to the dissertation in the future to improve both efficiency, speed, and result

generation.

10

2 LITERATURE REVIEW

2.1 AN OVERVIEW OF GENETICS

2.1.1 The Genome

The genome, or genetic code, in principle, is said to contain all traces of life, all the way back

to the universal common ancestor, this is where the initial genome was formed. Over

millennia this initial genome has been passed down to each generation, until the vastness of

living things we see today was established. (Jobling, et al., 2014)

The genome itself is a collection of building blocks, which act as a sequential template to

allow a particular species to exist, and to perform its intended functions. The genome’s

sequence, in the case of living things, is made up of DNA1, is translated to mRNA2, this

changes the production of proteins, causing the formation of a particular species, which is

dependent on that same genetic code. When a particular genome is passed down to a new

generation, it does not always remain intact, which means that the predeceasing genome will

almost always morph using a particular set of processes, namely; splicing, mutation and

crossovers, to evolve. After the genomic sequence morphs, its function will change, but due

to the fact that there are an abundance of genes to carry out these processes on, within the

sequence, changes are normally unnoticeable, unless a drastic mutation occurs, meaning that

the sequence itself will still manage to perform the same intended function. Changes are

usually noticeable over hundreds of thousands of years. This process is the main reason

which causes genetics to involve evolutionary practices that promote diversity.

2.1.2 Genomic Evolution

2.1.2.1 Splicing

Splicing is a form of crossover, which process involves two genomes. It essentially cuts out a

part of one genomic sequence, and fills it in with a part of another genomic sequence, in its

1 DNA: Deoxyribonucleic Acid
2 mRNA: Messenger Ribonucleic Acid

11

place. The part of the sequence to be removed is not target specific, which means that any

part of the sequence can be redacted, to make room for the receiving genomic sequence part.

After the splice is complete, enzymes are used to join the strains, forming a functional

genome. (Jobling, et al., 2014)

2.1.2.2 Mutation

Mutations are brought about when errors in changes to the genome occur, or the genome is

changed forcibly, from external sources. If mutations go wrong, they can affect the genome

negatively and drastically, however, some mutations may actually be beneficial. Mutations

can be classified into two groups, namely spontaneous mutations, and induced mutations.

Although uncommon, spontaneous mutations usually occur when the parent strand and the

sibling strand slip up in their alignment, causing imperfections in bonding. Induced Mutations

on the other hand are in abundance, and are brought about by environmental factors, such as;

radiation, pollutants, chemicals, illnesses and so on. (Andersen, 2012)

2.1.2.2.1 Substitution Mutations

Substitution mutations are one of the main types of how genomic sequences are mutated.

This form of mutation is where a part of the genomic sequence changes to another value. For

instance:

Initial Sequence

A A G C T T G A A T T C

Mutated Sequence

A A G C T C G A A T T C

The issue here is brought about when proteins scan the gene for mismatches. A protein might

decide to not fix the particular part of the sequence that was mutated, but instead decide to fix

the receiving gene to allow proper bonding. There is a 50% chance that this error is made,

12

which will translate to the mRNA, and to the proteins that make up the organism, possibly

causing physical changes in the organism. (Andersen, 2012)

2.1.2.2.2 Insertion Mutations

Insertion mutations occur when certain situations bring about breakages in the particular

sequence, which will leave gaps. In this case, when repairs are made to the sequence, those

gaps will need to be fixed by proteins. The issue with this however, is that, in some of the

cases when the fix is in progress, the particular sequence might accidentally have another part

to it inserted. This will mainly be problematic when a cell comes to replicate, as the strand

will most probably shift the sequence over, which could result in a mutated protein.

(Andersen, 2012)

Initial Sequence

T T C G A A C T T A A G

Mutated Sequence

T T C G A A G C T T A A G

2.1.2.2.3 Deletion Mutations

Nucleotides in DNA may be forcibly omitted for various reasons, most commonly from

external sources, such as radiation effects on the organism. When this particular mutation

occurs, the sequence has to curl to account for the missing space. When a cell comes to

replicate, and copies of parts of the sequence are made, the good part of the curled gene will

not cause problems, however the part with the missing nucleotide will if it is selected.

(Andersen, 2012)

2.1.3 Genetic Disorders

The aforementioned splicing and mutation processes will surely change the physical structure

of a particular organism, over millions of years, normally for the better, to adapt to its

13

environment, and be more competent in said environment. However these processes can also

be problematic, as bad genes can be erroneously created, causing the particular organism to

develop disabilities, which could possibly and almost surely cause disabilities in any shape or

form over a particular generation. Examples of these disorders in humans are; Cancers,

Neurofibromatosis, Down syndrome, etc. (National Human Genome Research Institute,

2014)

2.1.4 Survival of the Fittest

Genetic Disorders in organisms will directly affect how fit a particular organism is, in terms

of its ability against organisms of the same type, which will also translate to its survival rate

against other organisms. This impact also determines the dominance factor of a particular

animal or species, due to the fact that, if a particular organism is fitter than another, in most

cases, that organism will probably end up being a predator, or if not, exceed the unfit

organisms’ abilities.

2.2 DIFFERENT GENETIC ALGORITHM APPROACHES

2.2.1 Elitism

Genetic algorithms make use of elitist techniques in order to possibly provide a better

evolution base for descendant generation mutation and splices. Elitism is the practice of

storing the proven, fittest genomes, in memory and carrying them over to the next generation.

The elitist selections happen after each iteration, in a particular genetic algorithm framework.

Elitism is used to increase the probability of generating fitter genomes, over several

generations, by injecting already fit genomes into the same pool. (Leung & Liang, 2003)

2.2.2 Simulated Annealing

When working with large search spaces, simulated annealing applications are used to derive a

close to optimal result of a particular function by making use of approximations. Usually,

functions making use of simulated annealing utilise a temperature state which acts as a spigot

14

to control how the function operates, in terms of the particular search. For instance, a high

temperature would allow a wider search scope, then over generations as the temperature

decreases, the search scope will constrict until the close to optimal result is found.

(Kirkpatrick, et al., 1983)

2.2.3 Adaptive simulated annealing

Adaptive simulated annealing is an approach derived from the standard simulated annealing

algorithm, where the temperature state is modified in relation to the progress of the algorithm

itself. In this particular genetic algorithm approach, functions are put in place to determine

whether the temperature needs to be increased as well as reduced, which usually depends on

the algorithms progress. These functions then modify the temperature accordingly. However,

when using the standard simulated annealing approach, the temperature decreases to reduce

the amount of changes in the genome in a particular generation as it reaches a peak. Standard

simulated annealing is one way, adaptive simulated annealing approaches are two way,

constricting in certain parts of the search space and if necessary widening the scope to allow

wider searches depending on progress. Due to the fact that adaptive simulated annealing is

two way, it may improve searches as the algorithm would be able to make more changes in

the genome should it need to.

2.2.4 Taboo Search

The taboo search meta-heuristic was created by Fred W. Glover in 1986. The concept behind

this particular practice is to not allow search occurrences that have already been searched for

to be carried onto other parts of an algorithm. This is mainly accomplished by storing results

that have already been searched for in memory, and before adding new results to that

particular pool, the particular result would be checked against the pool. If the particular result

has already been searched for, it will not be carried over. (Glover & Laguna, 1997)

15

2.2.5 Differences between Genetic Algorithms and Evolutionary Algorithms

Evolutionary Algorithms attempt to solve a particular problem my mimicking Darwinian

evolution theory, meaning, Charles Darwin’s theory, stating that all living organisms evolve

by natural selection, and it directly affects an organism’s ability to reproduce, compete and

survive. Evolutionary algorithms are normally encompassed into three subsets, mainly;

Genetic Algorithms, developed by Holland, Evolutionary Programming developed by L.J.

Fogel and Evolution Strategies developed by Rechenberg and Schwefel (Jones, n.d.). This

means that Genetic Algorithms are a subset of Evolutionary Algorithms, which each have a

different approach to solve similar problems but utilising different strategies, in conjunction

to making use of different concepts. Genetic Algorithms, use crossover and mutation

functions to broaden the search space in a particular scenario, whereas Evolutionary

Algorithms are fixed, commonly only allowing mutations to occur. This means that Genetic

Algorithms’ search spaces promote a hierarchical approach of siblings and parents, whereas

Evolutionary Algorithms are random based.

2.3 APPLICATIONS OF GENETIC ALGORITHMS

2.3.1 Pancreatic Cancer Diagnosis

Genetic Algorithms have been successfully adapted to diagnose pancreatic cancer. The

problem with diagnosing pancreatic cancer is that it cannot be easily diagnosed during its

early stages of development, especially adenocarcinoma, which is a particular strain of this

cancer. The issue with misdiagnosing or overlooking pancreatic cancer can be potentially

aided by facilitating its diagnosis through (Moschopoulos, et al., 2013) particular Genetic

Algorithm’s results. Genetic algorithms can help in identifying and diagnosing the different

types of pancreatic cancer correctly. In this particular case, the information fed to the genetic

algorithm consists of a binary array with 19898 bits allocated to Genes, and 14 bits allocated

to SVM parameters, making up a total of 19912 bits which can be mapped to a particular

human individual’s tissue sample. Through the common practices of Darwinian evolution

16

theory, as aforementioned, namely boiled down to Selection, Crossovers and Mutation

functions in practice, this Genetic Algorithm managed to yield robust classifiers in detecting

pancreatic cancer. In addition to this, the team involved, managed to produce a list of

biomarkers which can continue to help facilitate the detection of this particular disease.

(Moschopoulos, et al., 2013)

2.3.2 Artificial Creativity

Creativity can be quite difficult to mimic in computer systems, mainly due to the fact that

creativity factors in a conscious mind. In a particular experiment, a Genetic Algorithm was

formulated in 3DMax, to attempt to come up with a way to mould an initial model, in this

case a cube, into something other than that initial cube. The algorithm was allowed to make

use of five functions, Taper, Twist, Stretch, Skew and Bend to accomplish this, alongside

parameters which effect the intensity of how these functions are utilised. The variety of

shapes created via this technique were quite significant, and over twenty generations yielded

diverse results, making use of elitism to continue to fuel changes which are fitter according to

the specified parameters. Ultimately this particular test shows that Genetic Algorithms can be

used to mimic a certain degree of creativity. (Marin, et al., 2008)

2.3.3 Spacecraft Antennae

Designing X-Band antennae by hand usually involves trial and error situations, and requires

significant expertise in the field and intense labour and expenses. NASA decided to use

Genetic Algorithms in their ST5 mission to develop an efficient X-Band antenna. The

Genetic Algorithm, took around four weeks to successfully evolve the initial antenna. In

doing so, NASA was able to explore thousands of new designs which were not likely to be

explored by experts in the field, as their shapes are particularly random and unusual. This

lead to the creation of an antenna with significant performance improvements, that passed the

specification tests required for it to meet the requirements for the spacecraft mission.

17

Improvements include better power, efficiency, performance, wider ranges and angles of

transmission, and also significant increases in data throughput. (Hornby, et al., 2006)

2.4 APPLICATIONS OF CODE EVOLUTION USING GENETIC ALGORITHMS

2.4.1 Code Optimisation

When it comes to optimising code, many practices usually cater for speed factors, normally in

the way a particular task is executed by the code itself, when compiled. However, other

optimisations, such as improving space complexity also exist. Since Genetic Algorithms are

quite suitable in terms of their applications in complier optimisations, they may be utilised to

find better object based solutions by allowing the implementation to search for smaller object

codes, which may result in shorter code, yet still be entirely able to accomplish the same task.

This particular genetic algorithm implementation, computes different optimised code

solutions over generations, then determines the compiled codes fitness in terms of space

complexity. It is important to note that the genetic algorithm approach (other than making use

of randomisation alone to accomplish the same task) provides a fast way to optimise code

whilst also manages to probe a significantly large search space. This particular technique

yielded positive results, which includes dramatic code size reduction, and increased speeds.

(Cooper, et al., n.d.)

2.4.2 Automated Source Code Evolution

Genetic algorithms may be applied to generate evolved, compilable source code, as

demonstrated by (Miller, 2012) who created an implementation in a particular C++ 11

application. Since this practice can successfully evolve code, it backs the fact that this

dissertation is viable. In terms of automated source code evolution, practices such as this may

be utilized and adapted to existing software, to allow that software to self-update. This is

useful when particular software solutions need to be constantly modified to cater for very

frequent changes. It is important to note that user interface based software and client

18

applications could prove to be difficult to evolve and may be impractical in this case, but

when it comes to internal system components, this could be completely viable, depending on

the system utilizing this approach.

19

3 METHODOLOGY

3.1 IMPLEMENTATION

3.1.1 Core War

Core War is a programming game in which, compiled programs, known as warriors, battle

one another in a sandbox in hopes of terminating each other’s process, and surviving long

enough to do so. The programs are written in a language derived from assembly, called

Redcode (Bhatia, n.d.). The dissertation implementation will utilise the nMars compiler,

which is the backbone of the game itself (Šavara, 2007), to pass it generated programs

alongside immutable programs. Immutable programs will also be stored on the hard disk, and

will act as the warriors to be beaten by the genetic algorithm. The aim in this case is to try to

evolve an initial immutable program to the point where it starts to win the most battles out of

every generated program including its predecessor, i.e. the initial immutable program.

3.1.2 Genetic Algorithm Framework

The genetic algorithm is an abstraction of a genetic algorithm implementation which will be

extended by a concrete genetic algorithm that will utilise core war programs (warriors) as

genomes. The genetic algorithm framework consists of classes which form the main genetic

algorithm, which include fitness function abstractions, and a settings class which can be used

to modify the genetic algorithm’s settings, such as; population, new genomes per generation,

iterations without improvement, and so on.

3.1.3 Program Environment

The program environment serves as a program backbone, meaning, it contains all required

classes to store programs, both in memory and otherwise. The program environment also

contains the program core, which will be directly linked to the nMars compiler, allowing

programs, after different generations, to battle, consequently changing their ELO Rating,

which will help in determining their fitness and viability in the particular pool after each

generation.

20

3.1.4 Elo Rating

Survival of the fittest has to be simulated in order to allow fitness functions to determine the

effectiveness of generated programs within the environment. This practice has been proven to

be correlated and calculated on dominance hierarchies in animal societies to determine their

fitness. (Neumann, et al., 2011)

The developed program makes use of this particular rating concept by utilising a built ELO

Rating class that houses methods to calculate new ELO Rating values, depending on the

winner of a particular battle. Then the ELO Rating fitness function compares the rating value

property in a particular program to determine its effectiveness against other programs within

the same pool, causing unfit programs to be removed from the optimal program collection.

It is important to note that before each and every battle, ELO Ratings are set to be equivalent

to one another, i.e. a global reset, in the particular pool, which allows the elitist selection of a

previous iteration to not affect the next. This way, mutations may still occur freely, and elitist

selection will only effect the next generation, but not the entire sequence of generations, as if

ratings were not reset, elitism would also happen on the fitness side of things, causing a

particular set of genes to constantly appear in each and every generation, rendering most of

the search redundant. This way, if programs are truly the best in the particular gene pool they

will have to accumulate sufficient rating every generation, to show this. These programs

would then be carried on as elitist to the next generation having to undergo the same process.

3.1.5 Gray Code

Gray code is used in computation, where a particular number, in binary, is represented in a

one-digit differentiation. Numeric mutations need to be less drastic, as mutation can be

difficult to implement via base 10 numeric values, whilst also promoting diversity. In order to

make sure that a particular change is relatively small when it comes to mutating, Gray Code

conversion mechanisms have been implemented, and work alongside mutation methods, so

21

that numeric mutations occur in the Gray Coded form of the base 10 values. This way,

mutation simulation will be gradual, which implies that it will be more realistic, as normally

genetic improvements are small, but large across vast generations.

Gray code works in this particular way: for instance, a particular number (such as; 12) would

be mutated from a Decimal value, using the Gray Code conversion algorithm, to its Binary

value, and then to its Gray Coded value:

(12)10 ↔ (1100)2 ↔ (1010)𝑔

The Gray Coded value will then be mutated by a random inversion of a particular digit, and

then be reverted back to a Binary value, and finally a Decimal value respectively, giving us a

randomly mutated number:

(1010)𝑔 ↔ (1011̅)𝑚𝑔 ↔ (1101)2 ↔ (13)10

(Weisstein, n.d.)

3.1.6 Concrete Genetic Algorithm

The genetic algorithm framework implementation is used to mimic the aforementioned

genetic processes, and allow the ability for an immutable program to act as an initiator, being

a genome, i.e. the Universal Common Ancestor. Extending the genetic algorithm framework

to produce these implementations will allow the overriding and modification of how its

methods and fitness functions work, to enable the restriction and viability of the search space

to only generate compliable programs, which should eventually lead to an evolved, improved

version of the initiator.

22

3.1.6.1 Mutation

Code based mutation can be broken down into different mutators in this particular

implementation. These mutators are; Numeric Mutator, Command Mutator, Address Mutator,

and Line Mutator, where each and every one of these mutators take care of mutating specific

parts of a given programs source code.

 The numeric mutator may mutate any numeric value found in a particular stream of

code where the aforementioned gray code conversion comes into play.

 The command mutator may substitute any existing commands with the following base

CoreWar commands in a particular code stream; DAT, MOV, ADD, SUB, MUL,

DIV, MOD, JMP, JMZ, JMN, DJN, CMP, SPL, SEQ, SNE, SLT, XCH, PCT, NOP,

STP and LDP.

 The address mutator is responsible is similar to the code mutator as is used to

substitute existing address instructions rather than command values. The values it may

substitute to are; #, $, _, @, <, >, *, } and { where in this case, _ is an empty space.

 The line mutator’s job is to come up with new random lines to be added to a particular

program, or to remove any amount of lines from a particular program. This is

particularly useful in mimicking deletion and insertion mutations in the particular

program code.

All the above mutators form a part of a Decorator Design Pattern implementation, which

allows for all mutators to work hand in hand with one another to provide the desired overall

mutation, depending on the amount of lines allowed to be mutated. It is important to note

that, the commands and address instructions used in mutation are that of a parsed core war

program. The decision in using these as opposed to the latter was due to the fact that it would

be problematic in mutating, as there are many different derivations of how core war programs

can be written to be compiled, which would have been too vast to cater for.

23

3.1.6.2 Splicing

Splicing is accomplished by performing a Cartesian product on all code lines. This means

that the two programs fed to the function which performs splicing techniques, are split apart

line by line, and all combinations for splicing are then calculated, as splicing in this particular

implementation is done by substituting a line from one program into another program and

vice versa. When all combinations for splicing are calculated, a random candidate swap is

chosen and checked for compilability, if compilable the program code changes are committed

and outputted back into the gene pool. If no candidates are found, the programs codes remain

as they were initially. This technique has been adopted, due to the fact that randomisation is

problematic in this case, as through randomisation alone, a compilable splice may never be

found causing the application to get stuck within the function, constantly checking for a

candidate, this way when all combinations are checked, the program can return changes or

default values accordingly. Even though modifications could bypass the function getting

stuck, this particular technique reduced finding compliable splices from approximately 30

seconds to approximately 10. It is however, important to note, that compilable programs are

checked via the nMars console application, and that in addition to the randomness aspect, will

make times vary.

3.1.6.3 Taboo Search

The taboo search metaheuristic has been applied in this dissertation by storing a list of

programs that have already been searched for, as hashed values, and then connecting its

implementation to the genetic algorithm itself. By doing so, the algorithm tends to be more

efficient in comparison to the latter, as when it comes to use generated programs to compete

after each generation, to determine their effectiveness, multiple occurrences of the same

program will not compete versus the immutable programs they are trying to defeat. This

means that the list of programs will not be polluted by the same program code bases over

multiple generations, as if this occurs, programs which have slightly less rating, but are still

24

sufficient in accomplishing the task at hand may be deprecated by the algorithm, causing lack

in evolutionary diversity, of which will surely lead to biased results. Not only that, but in

practice, since the taboo search collection stores hashed values of program code bases for

comparison, in addition to having less programs to battle one another, it also improves

performance. This performance improvement mainly comes from not having to open the

external nMars console application to initiate battles for the same program, and since

generating similar programs can be very common when not making use of this metaheuristic,

especially during the initial generation, in addition to the nMars console application having

its closings awaited by the genetic algorithm implementation, making use of the taboo search

improved speeds drastically.

3.1.6.4 Noteworthy Functions

3.1.6.4.1 Prepare Gene Pool Function

Due to the fact that elitist practices carry on particular fit programs to the next generation, it

was realised that these may also pollute the gene pool, as situations may arise where

programs with the same code could then be carried on as elitist, and so on. In order to avoid

this gradual pollution, the prepare gene pool function was created to take care of this before

the gene pool is updated. The way this works is by iterating over every program found in the

particular gene pool and then determining whether a program with the same code already

exists within it, if similar programs are found, the best rating out of all programs is assigned

to one program which is carried on while the rest are deprecated.

25

4 RESULTS

4.1 OVERVIEW
The programs generated via evolutionary practices in this dissertation have proved to be

somewhat effective against the immutable programs that they have been tested against in

fitness functions. When outputted the best programs in a particular occurrence have then been

copied and moved to the nMars IDE environment where they have been set to compete

against their initial program base code, and if the programs are not too complex and are good

evolvements, tend to win around 60% of the time against the initial base code. This practice

shows that evolved programs are able to hold their ground substantially via the opposing

warriors as in certain cases the evolved programs manage to beat other warriors in the

particular environment by having all opposing scores 0, whilst the evolved programs win all

the battles. It is important to note however, that as of yet there have not been any evolved

programs that constantly win, however wins fluctuate depending on the opposing warriors.

Evolved programs wins are somewhat consistent and will be demonstrated in the following

section.

4.2 GENERATED PROGRAMS
We will initially attempt to evolve a complex, highly rated program, by using the following

genetic algorithm settings:

Max Population 1000

Elitism Count 100

Max Iterations Without Improvement 5

Initial Program Evolved (Generation 1) Reverted (Generation 2) Reverted (Generation 3)

Rating: 1000 Rating: 1236.71 Rating: 1236.71 Rating: 1269.51
 ORG START
 DAT.F $ 2000, $ 400
 DAT.F $ 800, $ 200
 DAT.F $ 4600, $ 600
 JMP.B $ 7800, $ 15
 DAT.F $ 15, $ 7985
 ADD.A $ 7996, $ 7996
 ADD.AB @ 7999, $ 5
 ADD.B * 7998, @ 7999
 SNE.I $ 73, @ 3

 ORG START
ADD # -2997, +7084
 DAT.F $ 800, $ 200
 DAT.F $ 4600, $ 600
 JMP.B $ 7800, $ 15
 DAT.F $ 15, $ 7985
 ADD.A $ 7996, $ 7996
 ADD.AB @ 7999, $ 5
 ADD.B * 7998, @ 7999
 SNE.I $ 73, @ 3

 ORG START
 DAT.F $ 2000, $ 400
 DAT.F $ 800, $ 200
 DAT.F $ 4600, $ 600
 JMP.B $ 7800, $ 15
 DAT.F $ 15, $ 7985
 ADD.A $ 7996, $ 7996
 ADD.AB @ 7999, $ 5
 ADD.B * 7998, @ 7999
 SNE.I $ 73, @ 3

 ORG START
ADD # -2997, +7084
 DAT.F $ 800, $ 200
 DAT.F $ 4600, $ 600
 JMP.B $ 7800, $ 15
 DAT.F $ 15, $ 7985
 ADD.A $ 7996, $ 7996
 ADD.AB @ 7999, $ 5
 ADD.B * 7998, @ 7999
 SNE.I $ 73, @ 3

26

 ADD.AB # 100, $ 2
 MOV.I $ 7993, @ 1
 MOV.I $ 7993, @ 407
 ADD.BA $ 7999, $ 7999
 MOV.I $ 7990, * 7998
 ADD.F $ 7990, $ 7997
 MOV.I $ 7988, @ 7996
 DJN.B $ 7997, # 6
 JMP.B $ 53, } 7700
START CMP.I $ 400, $ 500
 JMP.B $ 7989, } 2600
 CMP.I $ 598, $ 698
 JMP.B $ 7986, } 647
 CMP.I $ 796, $ 896
 JMP.B $ 7984, { 7982
 CMP.I $ 994, $ 1094
 JMP.B $ 7982, } 7980
 CMP.I $ 2992, $ 3092
 JMP.B $ 7980, { 7980
 CMP.I $ 1190, $ 1290
 JMP.B > 7978, } 1239
 CMP.I $ 1388, $ 1488
 JMP.B $ 7975, } 1437
 CMP.I $ 1586, $ 1686
 JMP.B $ 7973, { 7972
 CMP.I $ 1784, $ 1884
 JMP.B $ 7971, } 7970
 CMP.I $ 2382, $ 2482
 JMP.B > 7970, < 7968
 CMP.I $ 2580, $ 2680
 JMP.B $ 7967, < 7966
 CMP.I $ 2778, $ 2878
 DJN.F $ 7965, $ 7964
 CMP.I $ 4976, $ 5076
 JMP.B > 7964, > 7962
 CMP.I $ 5174, $ 5274
 JMP.B $ 7961, > 7960
 CMP.I $ 3772, $ 3872
 JMP.B $ 7959, { 7960
 CMP.I $ 1970, $ 2070
 JMP.B < 7958, } 2019
 CMP.I $ 2168, $ 2268
 JMP.B $ 7954, } 2217
 CMP.I $ 3366, $ 3466
 JMP.B $ 7952, < 7952
 CMP.I $ 3564, $ 3664
 JMP.B $ 7950, { 7950
 CMP.I $ 4362, $ 4462
 DJN.F < 7950, $ 7948
 CMP.I $ 4560, $ 4660
 JMP.B $ 7946, { 7948
 CMP.I $ 4758, $ 4858
 DJN.F $ 7944, $ 7944
 CMP.I $ 5756, $ 5856
 JMP.B < 7944, > 7942
 CMP.I $ 5954, $ 6054
 JMP.B $ 7940, > 7940
 CMP.I $ 6352, $ 6452
 JMP.B $ 7938, } 7938
 JMP.B $ 2, $ 2
 SUB.F $ 11, $ 1
 CMP.I $ 125, $ 113
 SLT.A # 24, $ 7999
 DJN.F $ 7997, < 7692
 MOV.AB # 14, $ 2
 MOV.I $ 4, > 7996
 DJN.B $ 7999, # 0
 SUB.AB # 14, $ 7994
 JMN.B $ 7992, $ 7992
 SPL.A $ 0, $ 0
 MOV.I $ 1, < 7996

 ADD.AB # 100, $ 2
 MOV.I $ 7993, @ 1
 MOV.I $ 7993, @ 407
 ADD.BA $ 7999, $ 7999
 MOV.I $ 7990, * 7998
 ADD.F $ 7990, $ 7997
 MOV.I $ 7988, @ 7996
 DJN.B $ 7997, # 6
 JMP.B $ 53, } 7700
START CMP.I $ 400, $ 500
 JMP.B $ 7989, } 2600
 CMP.I $ 598, $ 698
 JMP.B $ 7986, } 647
 CMP.I $ 796, $ 896
 JMP.B $ 7984, { 7982
 CMP.I $ 994, $ 1094
 JMP.B $ 7982, } 7980
 CMP.I $ 2992, $ 3092
 JMP.B $ 7980, { 7980
 CMP.I $ 1190, $ 1290
 JMP.B > 7978, } 1239
 CMP.I $ 1388, $ 1488
 JMP.B $ 7975, } 1437
 CMP.I $ 1586, $ 1686
 JMP.B $ 7973, { 7972
 CMP.I $ 1784, $ 1884
 JMP.B $ 7971, } 7970
 CMP.I $ 2382, $ 2482
 JMP.B > 7970, < 7968
 CMP.I $ 2580, $ 2680
 JMP.B $ 7967, < 7966
 CMP.I $ 2778, $ 2878
 DJN.F $ 7965, $ 7964
 CMP.I $ 4976, $ 5076
 JMP.B > 7964, > 7962
 CMP.I $ 5174, $ 5274
 JMP.B $ 7961, > 7960
 CMP.I $ 3772, $ 3872
 JMP.B $ 7959, { 7960
 CMP.I $ 1970, $ 2070
 JMP.B < 7958, } 2019
 CMP.I $ 2168, $ 2268
 JMP.B $ 7954, } 2217
 CMP.I $ 3366, $ 3466
 JMP.B $ 7952, < 7952
 CMP.I $ 3564, $ 3664
 JMP.B $ 7950, { 7950
 CMP.I $ 4362, $ 4462
 DJN.F < 7950, $ 7948
 CMP.I $ 4560, $ 4660
 JMP.B $ 7946, { 7948
 CMP.I $ 4758, $ 4858
 DJN.F $ 7944, $ 7944
 CMP.I $ 5756, $ 5856
 JMP.B < 7944, > 7942
 CMP.I $ 5954, $ 6054
 JMP.B $ 7940, > 7940
 CMP.I $ 6352, $ 6452
 JMP.B $ 7938, } 7938
 JMP.B $ 2, $ 2
 SUB.F $ 11, $ 1
 CMP.I $ 125, $ 113
 SLT.A # 24, $ 7999
 DJN.F $ 7997, < 7692
 MOV.AB # 14, $ 2
 MOV.I $ 4, > 7996
 DJN.B $ 7999, # 0
 SUB.AB # 14, $ 7994
 JMN.B $ 7992, $ 7992
 SPL.A $ 0, $ 0
 MOV.I $ 1, < 7996

 ADD.AB # 100, $ 2
 MOV.I $ 7993, @ 1
 MOV.I $ 7993, @ 407
 ADD.BA $ 7999, $ 7999
 MOV.I $ 7990, * 7998
 ADD.F $ 7990, $ 7997
 MOV.I $ 7988, @ 7996
 DJN.B $ 7997, # 6
 JMP.B $ 53, } 7700
START CMP.I $ 400, $ 500
 JMP.B $ 7989, } 2600
 CMP.I $ 598, $ 698
 JMP.B $ 7986, } 647
 CMP.I $ 796, $ 896
 JMP.B $ 7984, { 7982
 CMP.I $ 994, $ 1094
 JMP.B $ 7982, } 7980
 CMP.I $ 2992, $ 3092
 JMP.B $ 7980, { 7980
 CMP.I $ 1190, $ 1290
 JMP.B > 7978, } 1239
 CMP.I $ 1388, $ 1488
 JMP.B $ 7975, } 1437
 CMP.I $ 1586, $ 1686
 JMP.B $ 7973, { 7972
 CMP.I $ 1784, $ 1884
 JMP.B $ 7971, } 7970
 CMP.I $ 2382, $ 2482
 JMP.B > 7970, < 7968
 CMP.I $ 2580, $ 2680
 JMP.B $ 7967, < 7966
 CMP.I $ 2778, $ 2878
 DJN.F $ 7965, $ 7964
 CMP.I $ 4976, $ 5076
 JMP.B > 7964, > 7962
 CMP.I $ 5174, $ 5274
 JMP.B $ 7961, > 7960
 CMP.I $ 3772, $ 3872
 JMP.B $ 7959, { 7960
 CMP.I $ 1970, $ 2070
 JMP.B < 7958, } 2019
 CMP.I $ 2168, $ 2268
 JMP.B $ 7954, } 2217
 CMP.I $ 3366, $ 3466
 JMP.B $ 7952, < 7952
 CMP.I $ 3564, $ 3664
 JMP.B $ 7950, { 7950
 CMP.I $ 4362, $ 4462
 DAT.F $ 2000, $ 400
 CMP.I $ 4560, $ 4660
 JMP.B $ 7946, { 7948
 CMP.I $ 4758, $ 4858
 DJN.F $ 7944, $ 7944
 CMP.I $ 5756, $ 5856
 JMP.B < 7944, > 7942
 CMP.I $ 5954, $ 6054
 JMP.B $ 7940, > 7940
 CMP.I $ 6352, $ 6452
 JMP.B $ 7938, } 7938
 JMP.B $ 2, $ 2
 SUB.F $ 11, $ 1
 CMP.I $ 125, $ 113
 SLT.A # 24, $ 7999
 DJN.F $ 7997, < 7692
 MOV.AB # 14, $ 2
 MOV.I $ 4, > 7996
 DJN.B $ 7999, # 0
 SUB.AB # 14, $ 7994
 JMN.B $ 7992, $ 7992
 SPL.A $ 0, $ 0
 MOV.I $ 1, < 7996

 ADD.AB # 100, $ 2
 MOV.I $ 7993, @ 1
 MOV.I $ 7993, @ 407
 ADD.BA $ 7999, $ 7999
 MOV.I $ 7990, * 7998
 ADD.F $ 7990, $ 7997
 MOV.I $ 7988, @ 7996
 DJN.B $ 7997, # 6
 JMP.B $ 53, } 7700
START CMP.I $ 400, $ 500
 JMP.B $ 7989, } 2600
 CMP.I $ 598, $ 698
 JMP.B $ 7986, } 647
 CMP.I $ 796, $ 896
 JMP.B $ 7984, { 7982
 CMP.I $ 994, $ 1094
 JMP.B $ 7982, } 7980
 CMP.I $ 2992, $ 3092
 JMP.B $ 7980, { 7980
 CMP.I $ 1190, $ 1290
 JMP.B > 7978, } 1239
 CMP.I $ 1388, $ 1488
 JMP.B $ 7975, } 1437
 CMP.I $ 1586, $ 1686
 JMP.B $ 7973, { 7972
 CMP.I $ 1784, $ 1884
 JMP.B $ 7971, } 7970
 CMP.I $ 2382, $ 2482
 JMP.B > 7970, < 7968
 CMP.I $ 2580, $ 2680
 JMP.B $ 7967, < 7966
 CMP.I $ 2778, $ 2878
 DJN.F $ 7965, $ 7964
 CMP.I $ 4976, $ 5076
 JMP.B > 7964, > 7962
 CMP.I $ 5174, $ 5274
 JMP.B $ 7961, > 7960
 CMP.I $ 3772, $ 3872
 JMP.B $ 7959, { 7960
 CMP.I $ 1970, $ 2070
 JMP.B < 7958, } 2019
 CMP.I $ 2168, $ 2268
 JMP.B $ 7954, } 2217
 CMP.I $ 3366, $ 3466
 JMP.B $ 7952, < 7952
 CMP.I $ 3564, $ 3664
 JMP.B $ 7950, { 7950
 CMP.I $ 4362, $ 4462
 DJN.F < 7950, $ 7948
 CMP.I $ 4560, $ 4660
 JMP.B $ 7946, { 7948
 CMP.I $ 4758, $ 4858
 DJN.F $ 7944, $ 7944
 CMP.I $ 5756, $ 5856
 JMP.B < 7944, > 7942
 CMP.I $ 5954, $ 6054
 JMP.B $ 7940, > 7940
 CMP.I $ 6352, $ 6452
 JMP.B $ 7938, } 7938
 JMP.B $ 2, $ 2
 SUB.F $ 11, $ 1
 CMP.I $ 125, $ 113
 SLT.A # 24, $ 7999
 DJN.F $ 7997, < 7692
 MOV.AB # 14, $ 2
 MOV.I $ 4, > 7996
 DJN.B $ 7999, # 0
 SUB.AB # 14, $ 7994
 JMN.B $ 7992, $ 7992
 SPL.A $ 0, $ 0
 MOV.I $ 1, < 7996

27

 DAT.F < 7958, < 7958
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0

 DAT.F < 7958, < 7958
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0

 DAT.F < 7958, < 7958
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0

 DAT.F < 7958, < 7958
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0
 DAT.F $ 0, $ 0

The findings above, lead us to believe that it is harder to evolve more complex programs,

considering the fact that the initial program’s evolved counterpart in generation three reverted

back to the initial program in generation four. This is probably due to the fact that these

programs normally have quite a substantial amount of thought behind them, and may be

harder to find improvements on. It is important to note that in addition to this, the above

program, is a world top-mid range program, which means that finding an evolved version of

it could take a lot more time, ideally by also increasing the maximum amount of generations

without improvement and population sizes. When it comes to the rating of the programs, the

initial program obtained 1236.71 as a rating, and then increased over generations, this

fluctuation, in this case an increase, is brought about because there is a certain factor of

randomisation involved, as wins, ties and losses may differ even against the same immutable

program a generated program is battling against, which is why the revert occurred in the first

place. In this case it so happens that less battles were won at earlier stages, however this has

nothing to do with the genetic algorithm implementation, as these ratings are purely an

interpretation of Core War results. It is also important to note that since the reverted program

and the evolved program have the same rating, it is highly likely that they will have close to

equal performance in comparison to each other.

28

The following chart shows a comparison of new programs and uncompilable programs

generated throughout all genetic algorithm generations in this particular case.

It is important to note, that the lengthier the size of the program fed to the genetic algorithm,

then the more uncompilable programs are generated, particularly within the first generation,

but not limited to. The ratio for compilable to uncompilable program generation in the first

generation, is around 1:20, where 1 is a compilable program and 20 is an uncompilable

program. However by the end of the genetic algorithms lifetime, as shown in the chart above,

this ratio changes slightly. The genetic algorithm stopped at generation 8 whilst battling

programs for 71,052 times. This whole process took approximately 12 hours.

39%

61%

Genetic Algorithm

Compilable Uncompilable

29

The following scatter chart shows the gradual growth of fitness across all generations in this

particular occurrence.

In a different experiment, more basic programs were used, both as an initiator and also as

immutable programs, using the same genetic algorithm settings:

Max Population 1000

Elitism Count 100

Max Iterations Without Improvement 5

Initial Program Evolved (Generation 1) Evolved (Generation 2)

Rating: 1000 Rating: 1078.29 Rating: 1136.47

ORG START
START ADD.AB # 4, $ 3

 MOV.I $ 2, @ 2
 JMP.B $ 7998, $ 0

 DAT.F # 0, # 0

ORG START
START ADD.AB # 4, $ 3
SUB < -4728, { +5406
 JMP.B $ 7998, $ 0
 DAT.F # 0, # 0

SLT > +2788, * +1060
START ADD.AB # 4, $ 3
 MOV.I $ 2, @ 2
 JMP.B $ 7998, $ 0
 DAT.F # 0, # 0

The initial program in this occurrence evolved twice, each by swapping out different lines

from the initial program producing quite a significant rating increase. The genetic algorithm

stopped at generation 7 whilst battling programs for 39,744 times. This whole process took

approximately 8 hours.

1000

1050

1100

1150

1200

1250

1300

0 1 2 3 4 5 6 7 8

R
at

in
g

Generation

Fitness

30

In order to compare the compilable to uncompilable ratios present after successfully evolving

a shorter, more basic, program, data has been collected to display the following pie chart:

It is immediately noticeable that when evolving shorter programs, the compilable ratio

increases to the point where it supersedes uncompilable programs. This, of course could

involve many factors such as randomisation, however, since randomisation is carried out over

the same amount of times as the previous attempt at evolving a program it is highly unlikely

that it would affect it by a large margin such as the above 22%, which means that it is

probably due to the size of the program being evolved.

61%

39%

Genetic Algorithm

Compilable Uncompilable

31

As is done with the previous program, the following scatter chart shows the gradual growth

of fitness across all generations in this particular occurrence:

Since the evolved base code differs from the initial program, the initial program and the last evolved

program in generation 2 have been battled against one another over 10 times in the nMars IDE, the

following is the console result:

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

Evolved by Anonymous scores 0

NewWarrior2 by Anonymous scores 3

Results: 0 1 0

1000

1020

1040

1060

1080

1100

1120

1140

1160

0 1 2 3 4 5 6 7

R
at

in
g

Generation

Rating

32

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

Evolved by Anonymous scores 0

NewWarrior2 by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

Evolved by Anonymous scores 0

33

NewWarrior2 by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

Parsing: C:\Users\Michael\Documents\Evolved.red

Parsing: C:\Users\Michael\Documents\NewWarrior2.red

========== Compiled 2 warriors, 0 failed ==========

NewWarrior2 by Anonymous scores 0

Evolved by Anonymous scores 3

Results: 0 1 0

========== Finished fight of 2 warriors ==========

34

5 FUTURE WORK

5.1 PERFORMANCE IMPROVEMENTS

5.1.1 Utilising nMars Libraries

The current genetic algorithm implementation utilises the nMars compiler. Interaction with

this compiler is being done through the nMars compiler’s console application, which allows

parameters to be passed through to it to compile code and initiate battles. Since the nMars

compiler itself does not allow the outputting of resultant data to a text file, for use in fitness

functions, the approach to utilise the nMars compiler via C# code, had to be done via another

step, the Windows CMD. Due to the fact that the genetic algorithm implementation, opens

the CMD, which then opens the nMars compiler and passes in the required programs to

battle, and then the battle results are outputted to a text file every time a battle occurs, the

search slows down drastically, since the process will have to be halted until the file is written

and results are processed. In order to improve performance, direct use of the nMars

compiler’s dynamic link libraries, instead of using the console application approach, will

drastically increase performance, due to the fact that no hard disk read/writes will be

necessary and the entire genetic algorithms searching could be done entirely in memory.

Further performance improvements would also be obtained since no other programs would be

required to be opened and awaited before the searching can continue, such as the launching of

the nMars compiler console application to determine whether a particular program is

compilable or not.

5.1.2 Paralellism

At this point, the genetic algorithm implementation is single threaded and does not make use

of multithreading or parallelism. Considering the fact that multithreading does not necessarily

mean utilising multiple processor cores, but instead time slicing, parallelism would most

likely, if not definitely, increase the genetic algorithm speed. This is due to the fact that

35

parallelism splits the work up on multiple CPU cores. Making use of the Task Parallel

Library contained within the .NET Framework, allows parallelism to not only take advantage

of the amount of cores of the system, but also utilises them to their maximum potential

drastically increasing speeds. Implementing this improvement would have to start by

improving the genetic algorithm framework, and then consequently implementing parallelism

throughout the entire project, making use of locks and volatile variables where required to

avoid object double access and inconsistencies whilst enforcing thread safety.

5.1.3 Function Improvement

Functions may be optimised and have their code and implementations reworked to possibly

increase speed and efficiency. In particular a function that could be optimised is the Prepare

Gene Pool Function (see Methodology). Since this particular function searches for similar

code bases, by comparing each pair of programs together, and then removes all instances with

that same code base but the one with the highest rating, the order of complexity of this

function is Ο(𝑛2) . In the current study, this time taken by this function to execute is

acceptable since the gene pool has a maximum size of 1000 genomes. In larger settings

however, it may prove to take too much time and this method should ideally be reworked, by

possibly taking a different approach. An idea could be to possibly utilise some form of data

structure, which would store each programs state in memory, this way these types of searches

would not be required to be made.

5.2 RESULT IMPROVEMENTS

5.2.1 Tweaking Genetic Algorithm Settings

The gene pool size (1000), and the amount of iterations without improvement (5), in the

current implementation takes the genetic algorithm around eight hours to complete and find

the best program across all generations. Increasing these settings could generate better

programs, as there would be a wider range of programs in the population, in addition to

36

allowing the genetic algorithm to continue searching for longer after no improvement has

been found. Currently, producing results takes a substantial amount of time and it would

make sense to utilise libraries instead of launch processes via the nMars compiler each and

every time. Larger programs will of course still take longer to evolve over generations, due to

the combinatory processes involved both in Cartesian product used in addition to its random

selection and program compilability occurrences.

5.2.2 Different Genetic Algorithms

Different genetic algorithm implementations have been researched, and are analysed in the

literature review. Implementing different genetic algorithms could improve results and might

generate better programs. For instance, a possible alternate implementation is based on

adaptive simulated annealing genetic algorithm in place of the current simulated annealing.

While the temperature in the simulated annealing is monotonic decreasing, the temperature in

the adaptive simulated annealing algorithm can increase and decrease, allowing for a wider

search that improves the chances of generating better programs. Experimenting with different

genetic algorithm implementations could also shed light on which algorithm is the best

algorithm overall in solving such a problem.

37

6 CONCLUSIONS

6.1 INFORMATION YIELDED
The most important information that this dissertation has yielded is the confirmation that

genetic algorithms and evolutionary programming practices have the possibility of being very

effective in evolving program source code. This dissertation has also shed a great deal of

insight on how evolutionary algorithms can be adapted to different situations, particularly in

the sense of different algorithms available and their characteristics, in addition to tweaks and

approaches that can be made to allow such algorithms to cater for the abstract problems at

hand, considering the fact that a genome can be of any type. Through the dissertation’s

research, comparison of different techniques has also paved the way for building a genetic

algorithm suitable for the task at hand, where these techniques have also been aided by

justifications and assertions on practices that work, against practices which do not work as

well in cases where genetic algorithms may be utilised. In addition to the above, the

dissertation’s program has also been able to generate evolved programs, which through them,

has allowed performing result analysis, shedding insight on what needs to be improved to

enable better evolved programs, speed and performance.

6.2 RESULT SUMMARISATION
The results generated via the genetic algorithm appear to indicate that source code can be

effectively evolved. In addition to this it appears that very efficient programs as initiators do

not evolve very well as opposed to those programs which are not that suited or good. Results

have also shown that there appear to be less uncompilable programs generated if the program

to be evolved is smaller. Considering the fact that the peak has been found within the first

three generations, as per the results, it could be useful to make use of adaptive simulated

annealing practices to better these particular searches.

38

6.3 RESULT USAGE
Since these results confirm that program source code can be evolved effectively via genetic

algorithms, individuals can then utilise similar techniques to attempt to evolve programs that

pertain to a particular task, or are of similar nature, to accomplish various specific, real life

tasks. These results may also aid individuals when to creating their own genetic algorithm

based optimisation techniques on source code and adding fitness functions for optimisation

purposes, such as code length versus efficiency, and so on.

39

7 REFERENCES

Andersen, P., 2012. Mutations - YouTube. [Online]

Available at: http://www.youtube.com/watch?v=eDbK0cxKKsk

[Accessed 9 February 2014].

Bhatia, S., n.d. Core War. [Online]

Available at: http://corewars.org/

[Accessed 3 March 2014].

Cooper, K. D., Schielke, P. J. & Subramanian, D., n.d. Optimising for Reduced Code Space

using Genetic Algorithms. In: Houston, Texas, USA: Department of Computer Science, Rice

University.

Glover, F. & Laguna, M., 1997. Tabu Search. Boston: Kluwer Academic Publishers.

Hornby, G. S., Globus, A., Linden, D. S. & Lohn, J. D., 2006. Automated Antenna Design

with Evolutionary Algorithms.

Jobling, M. et al., 2014. Human Evolutionary Genetics. 2nd ed. New York: Garland Science,

Taylor & Francis Group, LLC.

Jones, G., n.d. Genetic and Evolutionary Algorithms, Sheffield: University of Sheffield.

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P., 1983. Optimization by Simulated Annealing.

Science, New Series, 220(4598), pp. 671-680.

Leung, K.-S. & Liang, Y., 2003. Adaptive Elitist-Population Based Genetic Algorithm for

Multimodal Function Optimization, Shatin, N.T., Hong Kong: Department of Computer

Science & Engineering, The Chinese University of Hong Kong.

Marin, P., Bignon, J.-C. & Lequay, H., 2008. A Genetic Algorithm for use in Creative Design

Processes.

Miller, D., 2012. Genetic Algorithms for Automated Source Code Evolution: a C++11

tutorial | Dave Miller Blog. [Online]

Available at: http://www.millermattson.com/dave/?p=174

[Accessed 13 May 2014].

Moschopoulos, C. et al., 2013. A Genetic Algorithm for Pancreatic Cancer Diagnosis.

Springer, pp. 222-230.

National Human Genome Research Institute, 2014. Chromosome Abnormalities Fact Sheet.

[Online]

Available at: http://www.genome.gov/11508982

[Accessed 3 March 2014].

National Human Genome Research Institute, 2014. Specific Genetic Disorders. [Online]

Available at: http://www.genome.gov/10001204

[Accessed 3 March 2014].

Neumann, C. et al., 2011. Assessing dominance hierarchies: validation and advantages of

progressive evaluation with Elo-rating. Animal Behaviour, pp. 1-11.

40

Šavara, P., 2007. nMars - Core War MARS for .NET. [Online]

Available at: http://nmars.sourceforge.net/

[Accessed 3 March 2014].

Weisstein, E. W., n.d. Gray Code -- from Wolfram MathWorld. [Online]

Available at: http://mathworld.wolfram.com/GrayCode.html

[Accessed 9 March 2014].

