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ABSTRACT 

Evolutionary algorithms are used in many situations where complex, abstract, and or hard to 

achieve solutions have to be found.  Some applications are:  cancer diagnosis; artificial 

creativity; and spacecraft antennae design. Genetic algorithms are a subset of evolutionary 

algorithms that utilise Darwinian Evolution Theory principles such as splicing; mutation; and 

cross-over functions, to evolve genomic sequences that represent solutions to a given 

problem. 

 

Core War is a programming game, in which two or more programs are executed in a 

sandboxed memory battle, where the aim of each program is to terminate the other’s process.  

 

An application was built to evolve Core War programs using genetic algorithms for the 

purpose of searching for improvements on the original programs.  By making use of an Elo 

Rating system, the fitness of each generated program is evaluated, one generation after 

another. To calculate a program’s rating, the program is battled against other programs to 

measure their wins, ties and losses. The updated Elo Rating is then used to determine which 

programs are discarded or saved and carried over to future generations where they can 

continue to evolve. The Elo Rating is reset after every generation, to prevent programs 

carried over from previous generations from having high Elo Ratings that dominate the new 

generation, and do not give new programs the opportunity to be carried over. The particular 

genetic algorithm approach taken is based on simulated annealing, but also makes use of 

elitism and the taboo search meta-heuristic, all of which are designed to improve searching, 

speed, and the quality of the evolved Core War programs. 

 

Results show, that generated programs are able to be evolved properly, and can be more 

effective than some standard programs when tested in the actual nMars IDE.  Improved 

results can be obtained by improving the speed of execution of the algorithm, through 

practices such as parallelism, different parsing techniques, and by adjusting the genetic 

algorithm searching process. 
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1 INTRODUCTION 

1.1 OVERVIEW 
The main aim of this dissertation is to evolve program code via evolutionary practices, in 

order to possibly generate a fitter program for a particular task. In this case, the code is that of 

a warrior, pertaining to Core War, a programming game, where the aim of the game is for 

programs, called warriors, to compete against each other in the hopes of terminating each 

other’s process within a set amount of rounds, battles are categorised via a Win/Tie/Loss 

scale after the rounds are complete. The application built, uses a Genetic Algorithm, to carry 

out selection, mutation and cross-over processes on a particular genome, in this case, the code 

itself. Immutable programs (unchanging and non-evolving, pre-defined programs that already 

exist) are used in order to act as opposing programs to the programs generated by the 

algorithm and also as a basis for new programs. A fitness function is also used to rate 

programs, to estimate how effective the Genetic Algorithm is in terminating the immutable 

program’s process in each generation. The programs will duel one another by being loaded as 

text files into the CMD, which will make use of the nMars.NET Console Application, which 

contains a Core War compiler, to be able to carry out the battle rounds and save result files 

for further use within the application for further analysis. 

1.2 BENEFITS 
The benefits of this dissertation and the research carried out include an analysis and 

demonstration of how Evolutionary algorithms can attempt to solve programming problems 

that have no known solution or have very complex, abstract or dynamic solutions, including 

how well they perform against the given problem. 

There are various problems that can be solved using evolutionary algorithms. A few benefits 

that are brought about are: 
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 Distributed systems and distributed computation are vastly improving, which means 

that future applications of this dissertation may be used to solve far more complex 

problems, in a different context, by applying similar techniques but utilising more 

processing power, making use of more than one system to tackle the issue at hand. 

 While still retaining the same scope, the problems that are being solved may change 

over time, and require a different solution in order to be correctly and efficiently 

solved. In practice, this might cause the solution that has been built to have to be 

removed and re-implemented, or involve a lot of restructuring, especially in the case 

of legacy code, or where the original developer is no longer working on the project. 

This dissertation will show this by determining how evolutionary algorithms can 

evolve source code to solve the task at hand, even if the solution to the problem is 

changed - in this case, by having the generated program battle other programs in 

addition to the original immutable program. 

 The dissertation also demonstrates how evolutionary algorithms perform self-

optimisation techniques via their fitness function. In spite of the fact that the fitness 

function must be tailored to the problem the algorithm is trying to solve, by 

substituting the area the evolutionary aspect will be used by another, the same 

concepts of fitness, whilst modified for the specific application, can be utilised to 

perform searches in different contexts. 

1.3 KEY CHAPTERS 

1.3.1 Literature Review 

The Literature Review analyses the work carried out in related research, and provides the 

necessary background for the dissertation. The literature review contains information on 

genetics, genetic practices applied to algorithms, and the application of genetics in 

computation. 
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1.3.2 Methodology 

The methodology includes information about the research carried out in this dissertation, and 

the application implemented. The focus of this information is on the programming concepts 

and the applied information and research from the literature review, which includes any 

changes or modifications made, to make the dissertation program function as it should. 

1.3.3 Results 

In this chapter results and findings are presented and analysed, including comparisons and 

samples of generated programs and the explanations of these generated programs. 

1.3.4 Future Work 

This chapter presents, analysis and review conclusions to list any modifications that should 

be done to the dissertation in the future to improve both efficiency, speed, and result 

generation. 
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2 LITERATURE REVIEW 

2.1 AN OVERVIEW OF GENETICS 

2.1.1 The Genome 

The genome, or genetic code, in principle, is said to contain all traces of life, all the way back 

to the universal common ancestor, this is where the initial genome was formed. Over 

millennia this initial genome has been passed down to each generation, until the vastness of 

living things we see today was established. (Jobling, et al., 2014) 

The genome itself is a collection of building blocks, which act as a sequential template to 

allow a particular species to exist, and to perform its intended functions. The genome’s 

sequence, in the case of living things, is made up of DNA1, is translated to mRNA2, this 

changes the production of proteins, causing the formation of a particular species, which is 

dependent on that same genetic code. When a particular genome is passed down to a new 

generation, it does not always remain intact, which means that the predeceasing genome will 

almost always morph using a particular set of processes, namely; splicing, mutation and 

crossovers, to evolve. After the genomic sequence morphs, its function will change, but due 

to the fact that there are an abundance of genes to carry out these processes on, within the 

sequence, changes are normally unnoticeable, unless a drastic mutation occurs, meaning that 

the sequence itself will still manage to perform the same intended function. Changes are 

usually noticeable over hundreds of thousands of years. This process is the main reason 

which causes genetics to involve evolutionary practices that promote diversity. 

2.1.2 Genomic Evolution 

2.1.2.1 Splicing 

Splicing is a form of crossover, which process involves two genomes. It essentially cuts out a 

part of one genomic sequence, and fills it in with a part of another genomic sequence, in its 

                                                      
1 DNA: Deoxyribonucleic Acid 
2 mRNA: Messenger Ribonucleic Acid 
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place. The part of the sequence to be removed is not target specific, which means that any 

part of the sequence can be redacted, to make room for the receiving genomic sequence part. 

After the splice is complete, enzymes are used to join the strains, forming a functional 

genome. (Jobling, et al., 2014) 

2.1.2.2 Mutation 

Mutations are brought about when errors in changes to the genome occur, or the genome is 

changed forcibly, from external sources. If mutations go wrong, they can affect the genome 

negatively and drastically, however, some mutations may actually be beneficial. Mutations 

can be classified into two groups, namely spontaneous mutations, and induced mutations. 

Although uncommon, spontaneous mutations usually occur when the parent strand and the 

sibling strand slip up in their alignment, causing imperfections in bonding. Induced Mutations 

on the other hand are in abundance, and are brought about by environmental factors, such as; 

radiation, pollutants, chemicals, illnesses and so on. (Andersen, 2012) 

2.1.2.2.1 Substitution Mutations 

Substitution mutations are one of the main types of how genomic sequences are mutated. 

This form of mutation is where a part of the genomic sequence changes to another value. For 

instance: 

Initial Sequence 

A A G C T T G A A T T C 

 

Mutated Sequence 

A A G C T C G A A T T C 

 

The issue here is brought about when proteins scan the gene for mismatches. A protein might 

decide to not fix the particular part of the sequence that was mutated, but instead decide to fix 

the receiving gene to allow proper bonding. There is a 50% chance that this error is made, 
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which will translate to the mRNA, and to the proteins that make up the organism, possibly 

causing physical changes in the organism. (Andersen, 2012) 

2.1.2.2.2 Insertion Mutations 

Insertion mutations occur when certain situations bring about breakages in the particular 

sequence, which will leave gaps. In this case, when repairs are made to the sequence, those 

gaps will need to be fixed by proteins. The issue with this however, is that, in some of the 

cases when the fix is in progress, the particular sequence might accidentally have another part 

to it inserted. This will mainly be problematic when a cell comes to replicate, as the strand 

will most probably shift the sequence over, which could result in a mutated protein. 

(Andersen, 2012) 

Initial Sequence 

T T C G A A C T T A A G 

 

Mutated Sequence 

T T C G A A G C T T A A G 

 

2.1.2.2.3 Deletion Mutations 

Nucleotides in DNA may be forcibly omitted for various reasons, most commonly from 

external sources, such as radiation effects on the organism. When this particular mutation 

occurs, the sequence has to curl to account for the missing space. When a cell comes to 

replicate, and copies of parts of the sequence are made, the good part of the curled gene will 

not cause problems, however the part with the missing nucleotide will if it is selected. 

(Andersen, 2012) 

2.1.3 Genetic Disorders 

The aforementioned splicing and mutation processes will surely change the physical structure 

of a particular organism, over millions of years, normally for the better, to adapt to its 
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environment, and be more competent in said environment. However these processes can also 

be problematic, as bad genes can be erroneously created, causing the particular organism to 

develop disabilities, which could possibly and almost surely cause disabilities in any shape or 

form over a particular generation. Examples of these disorders in humans are; Cancers, 

Neurofibromatosis, Down syndrome, etc. (National Human Genome Research Institute, 

2014) 

2.1.4 Survival of the Fittest 

Genetic Disorders in organisms will directly affect how fit a particular organism is, in terms 

of its ability against organisms of the same type, which will also translate to its survival rate 

against other organisms.  This impact also determines the dominance factor of a particular 

animal or species, due to the fact that, if a particular organism is fitter than another, in most 

cases, that organism will probably end up being a predator, or if not, exceed the unfit 

organisms’ abilities. 

2.2 DIFFERENT GENETIC ALGORITHM APPROACHES 

2.2.1 Elitism 

Genetic algorithms make use of elitist techniques in order to possibly provide a better 

evolution base for descendant generation mutation and splices. Elitism is the practice of 

storing the proven, fittest genomes, in memory and carrying them over to the next generation. 

The elitist selections happen after each iteration, in a particular genetic algorithm framework. 

Elitism is used to increase the probability of generating fitter genomes, over several 

generations, by injecting already fit genomes into the same pool. (Leung & Liang, 2003) 

2.2.2 Simulated Annealing 

When working with large search spaces, simulated annealing applications are used to derive a 

close to optimal result of a particular function by making use of approximations. Usually, 

functions making use of simulated annealing utilise a temperature state which acts as a spigot 



14  

 

to control how the function operates, in terms of the particular search. For instance, a high 

temperature would allow a wider search scope, then over generations as the temperature 

decreases, the search scope will constrict until the close to optimal result is found. 

(Kirkpatrick, et al., 1983) 

2.2.3 Adaptive simulated annealing 

Adaptive simulated annealing is an approach derived from the standard simulated annealing 

algorithm, where the temperature state is modified in relation to the progress of the algorithm 

itself. In this particular genetic algorithm approach, functions are put in place to determine 

whether the temperature needs to be increased as well as reduced, which usually depends on 

the algorithms progress. These functions then modify the temperature accordingly. However, 

when using the standard simulated annealing approach, the temperature decreases to reduce 

the amount of changes in the genome in a particular generation as it reaches a peak. Standard 

simulated annealing is one way, adaptive simulated annealing approaches are two way, 

constricting in certain parts of the search space and if necessary widening the scope to allow 

wider searches depending on progress. Due to the fact that adaptive simulated annealing is 

two way, it may improve searches as the algorithm would be able to make more changes in 

the genome should it need to. 

2.2.4 Taboo Search 

The taboo search meta-heuristic was created by Fred W. Glover in 1986. The concept behind 

this particular practice is to not allow search occurrences that have already been searched for 

to be carried onto other parts of an algorithm. This is mainly accomplished by storing results 

that have already been searched for in memory, and before adding new results to that 

particular pool, the particular result would be checked against the pool. If the particular result 

has already been searched for, it will not be carried over. (Glover & Laguna, 1997) 
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2.2.5 Differences between Genetic Algorithms and Evolutionary Algorithms 

Evolutionary Algorithms attempt to solve a particular problem my mimicking Darwinian 

evolution theory, meaning, Charles Darwin’s theory, stating that all living organisms evolve 

by natural selection, and it directly affects an organism’s ability to reproduce, compete and 

survive. Evolutionary algorithms are normally encompassed into three subsets, mainly; 

Genetic Algorithms, developed by Holland, Evolutionary Programming developed by L.J. 

Fogel and Evolution Strategies developed by Rechenberg and Schwefel (Jones, n.d.). This 

means that Genetic Algorithms are a subset of Evolutionary Algorithms, which each have a 

different approach to solve similar problems but utilising different strategies, in conjunction 

to making use of different concepts. Genetic Algorithms, use crossover and mutation 

functions to broaden the search space in a particular scenario, whereas Evolutionary 

Algorithms are fixed, commonly only allowing mutations to occur. This means that Genetic 

Algorithms’ search spaces promote a hierarchical approach of siblings and parents, whereas 

Evolutionary Algorithms are random based. 

2.3 APPLICATIONS OF GENETIC ALGORITHMS 

2.3.1 Pancreatic Cancer Diagnosis 

Genetic Algorithms have been successfully adapted to diagnose pancreatic cancer. The 

problem with diagnosing pancreatic cancer is that it cannot be easily diagnosed during its 

early stages of development, especially adenocarcinoma, which is a particular strain of this 

cancer. The issue with misdiagnosing or overlooking pancreatic cancer can be potentially 

aided by facilitating its diagnosis through (Moschopoulos, et al., 2013) particular Genetic 

Algorithm’s results. Genetic algorithms can help in identifying and diagnosing the different 

types of pancreatic cancer correctly.  In this particular case, the information fed to the genetic 

algorithm consists of a binary array with 19898 bits allocated to Genes, and 14 bits allocated 

to SVM parameters, making up a total of 19912 bits which can be mapped to a particular 

human individual’s tissue sample. Through the common practices of Darwinian evolution 
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theory, as aforementioned, namely boiled down to Selection, Crossovers and Mutation 

functions in practice, this Genetic Algorithm managed to yield robust classifiers in detecting 

pancreatic cancer. In addition to this, the team involved, managed to produce a list of 

biomarkers which can continue to help facilitate the detection of this particular disease. 

(Moschopoulos, et al., 2013) 

2.3.2 Artificial Creativity 

Creativity can be quite difficult to mimic in computer systems, mainly due to the fact that 

creativity factors in a conscious mind. In a particular experiment, a Genetic Algorithm was 

formulated in 3DMax, to attempt to come up with a way to mould an initial model, in this 

case a cube, into something other than that initial cube. The algorithm was allowed to make 

use of five functions, Taper, Twist, Stretch, Skew and Bend to accomplish this, alongside 

parameters which effect the intensity of how these functions are utilised. The variety of 

shapes created via this technique were quite significant, and over twenty generations yielded 

diverse results, making use of elitism to continue to fuel changes which are fitter according to 

the specified parameters. Ultimately this particular test shows that Genetic Algorithms can be 

used to mimic a certain degree of creativity. (Marin, et al., 2008) 

2.3.3 Spacecraft Antennae 

Designing X-Band antennae by hand usually involves trial and error situations, and requires 

significant expertise in the field and intense labour and expenses. NASA decided to use 

Genetic Algorithms in their ST5 mission to develop an efficient X-Band antenna. The 

Genetic Algorithm, took around four weeks to successfully evolve the initial antenna. In 

doing so, NASA was able to explore thousands of new designs which were not likely to be 

explored by experts in the field, as their shapes are particularly random and unusual. This 

lead to the creation of an antenna with significant performance improvements, that passed the 

specification tests required for it to meet the requirements for the spacecraft mission. 
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Improvements include better power, efficiency, performance, wider ranges and angles of 

transmission, and also significant increases in data throughput. (Hornby, et al., 2006) 

2.4 APPLICATIONS OF CODE EVOLUTION USING GENETIC ALGORITHMS 

2.4.1 Code Optimisation 

When it comes to optimising code, many practices usually cater for speed factors, normally in 

the way a particular task is executed by the code itself, when compiled. However, other 

optimisations, such as improving space complexity also exist. Since Genetic Algorithms are 

quite suitable in terms of their applications in complier optimisations, they may be utilised to 

find better object based solutions by allowing the implementation to search for smaller object 

codes, which may result in shorter code, yet still be entirely able to accomplish the same task. 

This particular genetic algorithm implementation, computes different optimised code 

solutions over generations, then determines the compiled codes fitness in terms of space 

complexity. It is important to note that the genetic algorithm approach (other than making use 

of randomisation alone to accomplish the same task) provides a fast way to optimise code 

whilst also manages to probe a significantly large search space. This particular technique 

yielded positive results, which includes dramatic code size reduction, and increased speeds. 

(Cooper, et al., n.d.) 

2.4.2 Automated Source Code Evolution 

Genetic algorithms may be applied to generate evolved, compilable source code, as 

demonstrated by (Miller, 2012) who created an implementation in a particular C++ 11 

application. Since this practice can successfully evolve code, it backs the fact that this 

dissertation is viable. In terms of automated source code evolution, practices such as this may 

be utilized and adapted to existing software, to allow that software to self-update. This is 

useful when particular software solutions need to be constantly modified to cater for very 

frequent changes. It is important to note that user interface based software and client 
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applications could prove to be difficult to evolve and may be impractical in this case, but 

when it comes to internal system components, this could be completely viable, depending on 

the system utilizing this approach. 
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3 METHODOLOGY 

3.1 IMPLEMENTATION 

3.1.1 Core War 

Core War is a programming game in which, compiled programs, known as warriors, battle 

one another in a sandbox in hopes of terminating each other’s process, and surviving long 

enough to do so. The programs are written in a language derived from assembly, called 

Redcode (Bhatia, n.d.). The dissertation implementation will utilise the nMars compiler, 

which is the backbone of the game itself (Šavara, 2007), to pass it generated programs 

alongside immutable programs. Immutable programs will also be stored on the hard disk, and 

will act as the warriors to be beaten by the genetic algorithm. The aim in this case is to try to 

evolve an initial immutable program to the point where it starts to win the most battles out of 

every generated program including its predecessor, i.e. the initial immutable program.  

3.1.2 Genetic Algorithm Framework 

The genetic algorithm is an abstraction of a genetic algorithm implementation which will be 

extended by a concrete genetic algorithm that will utilise core war programs (warriors) as 

genomes. The genetic algorithm framework consists of classes which form the main genetic 

algorithm, which include fitness function abstractions, and a settings class which can be used 

to modify the genetic algorithm’s settings, such as; population, new genomes per generation, 

iterations without improvement, and so on. 

3.1.3 Program Environment 

The program environment serves as a program backbone, meaning, it contains all required 

classes to store programs, both in memory and otherwise. The program environment also 

contains the program core, which will be directly linked to the nMars compiler, allowing 

programs, after different generations, to battle, consequently changing their ELO Rating, 

which will help in determining their fitness and viability in the particular pool after each 

generation. 
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3.1.4 Elo Rating 

Survival of the fittest has to be simulated in order to allow fitness functions to determine the 

effectiveness of generated programs within the environment. This practice has been proven to 

be correlated and calculated on dominance hierarchies in animal societies to determine their 

fitness. (Neumann, et al., 2011) 

The developed program makes use of this particular rating concept by utilising a built ELO 

Rating class that houses methods to calculate new ELO Rating values, depending on the 

winner of a particular battle. Then the ELO Rating fitness function compares the rating value 

property in a particular program to determine its effectiveness against other programs within 

the same pool, causing unfit programs to be removed from the optimal program collection. 

It is important to note that before each and every battle, ELO Ratings are set to be equivalent 

to one another, i.e. a global reset, in the particular pool, which allows the elitist selection of a 

previous iteration to not affect the next. This way, mutations may still occur freely, and elitist 

selection will only effect the next generation, but not the entire sequence of generations, as if 

ratings were not reset, elitism would also happen on the fitness side of things, causing a 

particular set of genes to constantly appear in each and every generation, rendering most of 

the search redundant. This way, if programs are truly the best in the particular gene pool they 

will have to accumulate sufficient rating every generation, to show this. These programs 

would then be carried on as elitist to the next generation having to undergo the same process. 

3.1.5 Gray Code 

Gray code is used in computation, where a particular number, in binary, is represented in a 

one-digit differentiation. Numeric mutations need to be less drastic, as mutation can be 

difficult to implement via base 10 numeric values, whilst also promoting diversity. In order to 

make sure that a particular change is relatively small when it comes to mutating, Gray Code 

conversion mechanisms have been implemented, and work alongside mutation methods, so 
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that numeric mutations occur in the Gray Coded form of the base 10 values. This way, 

mutation simulation will be gradual, which implies that it will be more realistic, as normally 

genetic improvements are small, but large across vast generations. 

Gray code works in this particular way: for instance, a particular number (such as; 12) would 

be mutated from a Decimal value, using the Gray Code conversion algorithm, to its Binary 

value, and then to its Gray Coded value: 

(12)10    ↔    (1100)2    ↔    (1010)𝑔 

The Gray Coded value will then be mutated by a random inversion of a particular digit, and 

then be reverted back to a Binary value, and finally a Decimal value respectively, giving us a 

randomly mutated number: 

(1010)𝑔    ↔     (1011̅)𝑚𝑔     ↔     (1101)2     ↔     (13)10 

(Weisstein, n.d.) 

3.1.6 Concrete Genetic Algorithm 

The genetic algorithm framework implementation is used to mimic the aforementioned 

genetic processes, and allow the ability for an immutable program to act as an initiator, being 

a genome, i.e. the Universal Common Ancestor. Extending the genetic algorithm framework 

to produce these implementations will allow the overriding and modification of how its 

methods and fitness functions work, to enable the restriction and viability of the search space 

to only generate compliable programs, which should eventually lead to an evolved, improved 

version of the initiator.  
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3.1.6.1 Mutation 

Code based mutation can be broken down into different mutators in this particular 

implementation. These mutators are; Numeric Mutator, Command Mutator, Address Mutator, 

and Line Mutator, where each and every one of these mutators take care of mutating specific 

parts of a given programs source code.  

 The numeric mutator may mutate any numeric value found in a particular stream of 

code where the aforementioned gray code conversion comes into play.  

 The command mutator may substitute any existing commands with the following base 

CoreWar commands in a particular code stream; DAT, MOV, ADD, SUB, MUL, 

DIV, MOD, JMP, JMZ, JMN, DJN, CMP, SPL, SEQ, SNE, SLT, XCH, PCT, NOP, 

STP and LDP. 

 The address mutator is responsible is similar to the code mutator as is used to 

substitute existing address instructions rather than command values. The values it may 

substitute to are; #, $, _, @, <, >, *, } and { where in this case, _ is an empty space. 

 The line mutator’s job is to come up with new random lines to be added to a particular 

program, or to remove any amount of lines from a particular program. This is 

particularly useful in mimicking deletion and insertion mutations in the particular 

program code. 

All the above mutators form a part of a Decorator Design Pattern implementation, which 

allows for all mutators to work hand in hand with one another to provide the desired overall 

mutation, depending on the amount of lines allowed to be mutated. It is important to note 

that, the commands and address instructions used in mutation are that of a parsed core war 

program. The decision in using these as opposed to the latter was due to the fact that it would 

be problematic in mutating, as there are many different derivations of how core war programs 

can be written to be compiled, which would have been too vast to cater for. 
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3.1.6.2 Splicing 

Splicing is accomplished by performing a Cartesian product on all code lines. This means 

that the two programs fed to the function which performs splicing techniques, are split apart 

line by line, and all combinations for splicing are then calculated, as splicing in this particular 

implementation is done by substituting a line from one program into another program and 

vice versa. When all combinations for splicing are calculated, a random candidate swap is 

chosen and checked for compilability, if compilable the program code changes are committed 

and outputted back into the gene pool. If no candidates are found, the programs codes remain 

as they were initially. This technique has been adopted, due to the fact that randomisation is 

problematic in this case, as through randomisation alone, a compilable splice may never be 

found causing the application to get stuck within the function, constantly checking for a 

candidate, this way when all combinations are checked, the program can return changes or 

default values accordingly. Even though modifications could bypass the function getting 

stuck, this particular technique reduced finding compliable splices from approximately 30 

seconds to approximately 10. It is however, important to note, that compilable programs are 

checked via the nMars console application, and that in addition to the randomness aspect, will 

make times vary. 

3.1.6.3 Taboo Search 

The taboo search metaheuristic has been applied in this dissertation by storing a list of 

programs that have already been searched for, as hashed values, and then connecting its 

implementation to the genetic algorithm itself. By doing so, the algorithm tends to be more 

efficient in comparison to the latter, as when it comes to use generated programs to compete 

after each generation, to determine their effectiveness, multiple occurrences of the same 

program will not compete versus the immutable programs they are trying to defeat. This 

means that the list of programs will not be polluted by the same program code bases over 

multiple generations, as if this occurs, programs which have slightly less rating, but are still 
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sufficient in accomplishing the task at hand may be deprecated by the algorithm, causing lack 

in evolutionary diversity, of which will surely lead to biased results. Not only that, but in 

practice, since the taboo search collection stores hashed values of program code bases for 

comparison, in addition to having less programs to battle one another, it also improves 

performance. This performance improvement mainly comes from not having to open the 

external nMars console application to initiate battles for the same program, and since 

generating similar programs can be very common when not making use of this metaheuristic, 

especially during the initial generation, in addition to the nMars console application having 

its closings awaited by the genetic algorithm implementation, making use of the taboo search 

improved speeds drastically. 

3.1.6.4 Noteworthy Functions 

3.1.6.4.1 Prepare Gene Pool Function 

Due to the fact that elitist practices carry on particular fit programs to the next generation, it 

was realised that these may also pollute the gene pool, as situations may arise where 

programs with the same code could then be carried on as elitist, and so on. In order to avoid 

this gradual pollution, the prepare gene pool function was created to take care of this before 

the gene pool is updated. The way this works is by iterating over every program found in the 

particular gene pool and then determining whether a program with the same code already 

exists within it, if similar programs are found, the best rating out of all programs is assigned 

to one program which is carried on while the rest are deprecated. 
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4 RESULTS 

4.1 OVERVIEW 
The programs generated via evolutionary practices in this dissertation have proved to be 

somewhat effective against the immutable programs that they have been tested against in 

fitness functions. When outputted the best programs in a particular occurrence have then been 

copied and moved to the nMars IDE environment where they have been set to compete 

against their initial program base code, and if the programs are not too complex and are good 

evolvements, tend to win around 60% of the time against the initial base code. This practice 

shows that evolved programs are able to hold their ground substantially via the opposing 

warriors as in certain cases the evolved programs manage to beat other warriors in the 

particular environment by having all opposing scores 0, whilst the evolved programs win all 

the battles. It is important to note however, that as of yet there have not been any evolved 

programs that constantly win, however wins fluctuate depending on the opposing warriors. 

Evolved programs wins are somewhat consistent and will be demonstrated in the following 

section. 

4.2 GENERATED PROGRAMS 
We will initially attempt to evolve a complex, highly rated program, by using the following 

genetic algorithm settings: 

Max Population 1000 

Elitism Count 100 

Max Iterations Without Improvement 5 

 

Initial Program Evolved (Generation 1) Reverted (Generation 2) Reverted (Generation 3) 

Rating: 1000 Rating: 1236.71 Rating: 1236.71 Rating: 1269.51 
       ORG      START 
       DAT.F  $  2000, $   400 
       DAT.F  $   800, $   200 
       DAT.F  $  4600, $   600 
       JMP.B  $  7800, $    15 
       DAT.F  $    15, $  7985 
       ADD.A  $  7996, $  7996 
       ADD.AB @  7999, $     5 
       ADD.B  *  7998, @  7999 
       SNE.I  $    73, @     3 

       ORG      START 
ADD # -2997,   +7084 
       DAT.F  $   800, $   200 
       DAT.F  $  4600, $   600 
       JMP.B  $  7800, $    15 
       DAT.F  $    15, $  7985 
       ADD.A  $  7996, $  7996 
       ADD.AB @  7999, $     5 
       ADD.B  *  7998, @  7999 
       SNE.I  $    73, @     3 

       ORG      START 
       DAT.F  $  2000, $   400 
       DAT.F  $   800, $   200 
       DAT.F  $  4600, $   600 
       JMP.B  $  7800, $    15 
       DAT.F  $    15, $  7985 
       ADD.A  $  7996, $  7996 
       ADD.AB @  7999, $     5 
       ADD.B  *  7998, @  7999 
       SNE.I  $    73, @     3 

       ORG      START 
ADD # -2997,   +7084 
       DAT.F  $   800, $   200 
       DAT.F  $  4600, $   600 
       JMP.B  $  7800, $    15 
       DAT.F  $    15, $  7985 
       ADD.A  $  7996, $  7996 
       ADD.AB @  7999, $     5 
       ADD.B  *  7998, @  7999 
       SNE.I  $    73, @     3 
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       ADD.AB #   100, $     2 
       MOV.I  $  7993, @     1 
       MOV.I  $  7993, @   407 
       ADD.BA $  7999, $  7999 
       MOV.I  $  7990, *  7998 
       ADD.F  $  7990, $  7997 
       MOV.I  $  7988, @  7996 
       DJN.B  $  7997, #     6 
       JMP.B  $    53, }  7700 
START  CMP.I  $   400, $   500 
       JMP.B  $  7989, }  2600 
       CMP.I  $   598, $   698 
       JMP.B  $  7986, }   647 
       CMP.I  $   796, $   896 
       JMP.B  $  7984, {  7982 
       CMP.I  $   994, $  1094 
       JMP.B  $  7982, }  7980 
       CMP.I  $  2992, $  3092 
       JMP.B  $  7980, {  7980 
       CMP.I  $  1190, $  1290 
       JMP.B  >  7978, }  1239 
       CMP.I  $  1388, $  1488 
       JMP.B  $  7975, }  1437 
       CMP.I  $  1586, $  1686 
       JMP.B  $  7973, {  7972 
       CMP.I  $  1784, $  1884 
       JMP.B  $  7971, }  7970 
       CMP.I  $  2382, $  2482 
       JMP.B  >  7970, <  7968 
       CMP.I  $  2580, $  2680 
       JMP.B  $  7967, <  7966 
       CMP.I  $  2778, $  2878 
       DJN.F  $  7965, $  7964 
       CMP.I  $  4976, $  5076 
       JMP.B  >  7964, >  7962 
       CMP.I  $  5174, $  5274 
       JMP.B  $  7961, >  7960 
       CMP.I  $  3772, $  3872 
       JMP.B  $  7959, {  7960 
       CMP.I  $  1970, $  2070 
       JMP.B  <  7958, }  2019 
       CMP.I  $  2168, $  2268 
       JMP.B  $  7954, }  2217 
       CMP.I  $  3366, $  3466 
       JMP.B  $  7952, <  7952 
       CMP.I  $  3564, $  3664 
       JMP.B  $  7950, {  7950 
       CMP.I  $  4362, $  4462 
       DJN.F  <  7950, $  7948 
       CMP.I  $  4560, $  4660 
       JMP.B  $  7946, {  7948 
       CMP.I  $  4758, $  4858 
       DJN.F  $  7944, $  7944 
       CMP.I  $  5756, $  5856 
       JMP.B  <  7944, >  7942 
       CMP.I  $  5954, $  6054 
       JMP.B  $  7940, >  7940 
       CMP.I  $  6352, $  6452 
       JMP.B  $  7938, }  7938 
       JMP.B  $     2, $     2 
       SUB.F  $    11, $     1 
       CMP.I  $   125, $   113 
       SLT.A  #    24, $  7999 
       DJN.F  $  7997, <  7692 
       MOV.AB #    14, $     2 
       MOV.I  $     4, >  7996 
       DJN.B  $  7999, #     0 
       SUB.AB #    14, $  7994 
       JMN.B  $  7992, $  7992 
       SPL.A  $     0, $     0 
       MOV.I  $     1, <  7996 

       ADD.AB #   100, $     2 
       MOV.I  $  7993, @     1 
       MOV.I  $  7993, @   407 
       ADD.BA $  7999, $  7999 
       MOV.I  $  7990, *  7998 
       ADD.F  $  7990, $  7997 
       MOV.I  $  7988, @  7996 
       DJN.B  $  7997, #     6 
       JMP.B  $    53, }  7700 
START  CMP.I  $   400, $   500 
       JMP.B  $  7989, }  2600 
       CMP.I  $   598, $   698 
       JMP.B  $  7986, }   647 
       CMP.I  $   796, $   896 
       JMP.B  $  7984, {  7982 
       CMP.I  $   994, $  1094 
       JMP.B  $  7982, }  7980 
       CMP.I  $  2992, $  3092 
       JMP.B  $  7980, {  7980 
       CMP.I  $  1190, $  1290 
       JMP.B  >  7978, }  1239 
       CMP.I  $  1388, $  1488 
       JMP.B  $  7975, }  1437 
       CMP.I  $  1586, $  1686 
       JMP.B  $  7973, {  7972 
       CMP.I  $  1784, $  1884 
       JMP.B  $  7971, }  7970 
       CMP.I  $  2382, $  2482 
       JMP.B  >  7970, <  7968 
       CMP.I  $  2580, $  2680 
       JMP.B  $  7967, <  7966 
       CMP.I  $  2778, $  2878 
       DJN.F  $  7965, $  7964 
       CMP.I  $  4976, $  5076 
       JMP.B  >  7964, >  7962 
       CMP.I  $  5174, $  5274 
       JMP.B  $  7961, >  7960 
       CMP.I  $  3772, $  3872 
       JMP.B  $  7959, {  7960 
       CMP.I  $  1970, $  2070 
       JMP.B  <  7958, }  2019 
       CMP.I  $  2168, $  2268 
       JMP.B  $  7954, }  2217 
       CMP.I  $  3366, $  3466 
       JMP.B  $  7952, <  7952 
       CMP.I  $  3564, $  3664 
       JMP.B  $  7950, {  7950 
       CMP.I  $  4362, $  4462 
       DJN.F  <  7950, $  7948 
       CMP.I  $  4560, $  4660 
       JMP.B  $  7946, {  7948 
       CMP.I  $  4758, $  4858 
       DJN.F  $  7944, $  7944 
       CMP.I  $  5756, $  5856 
       JMP.B  <  7944, >  7942 
       CMP.I  $  5954, $  6054 
       JMP.B  $  7940, >  7940 
       CMP.I  $  6352, $  6452 
       JMP.B  $  7938, }  7938 
       JMP.B  $     2, $     2 
       SUB.F  $    11, $     1 
       CMP.I  $   125, $   113 
       SLT.A  #    24, $  7999 
       DJN.F  $  7997, <  7692 
       MOV.AB #    14, $     2 
       MOV.I  $     4, >  7996 
       DJN.B  $  7999, #     0 
       SUB.AB #    14, $  7994 
       JMN.B  $  7992, $  7992 
       SPL.A  $     0, $     0 
       MOV.I  $     1, <  7996 

       ADD.AB #   100, $     2 
       MOV.I  $  7993, @     1 
       MOV.I  $  7993, @   407 
       ADD.BA $  7999, $  7999 
       MOV.I  $  7990, *  7998 
       ADD.F  $  7990, $  7997 
       MOV.I  $  7988, @  7996 
       DJN.B  $  7997, #     6 
       JMP.B  $    53, }  7700 
START  CMP.I  $   400, $   500 
       JMP.B  $  7989, }  2600 
       CMP.I  $   598, $   698 
       JMP.B  $  7986, }   647 
       CMP.I  $   796, $   896 
       JMP.B  $  7984, {  7982 
       CMP.I  $   994, $  1094 
       JMP.B  $  7982, }  7980 
       CMP.I  $  2992, $  3092 
       JMP.B  $  7980, {  7980 
       CMP.I  $  1190, $  1290 
       JMP.B  >  7978, }  1239 
       CMP.I  $  1388, $  1488 
       JMP.B  $  7975, }  1437 
       CMP.I  $  1586, $  1686 
       JMP.B  $  7973, {  7972 
       CMP.I  $  1784, $  1884 
       JMP.B  $  7971, }  7970 
       CMP.I  $  2382, $  2482 
       JMP.B  >  7970, <  7968 
       CMP.I  $  2580, $  2680 
       JMP.B  $  7967, <  7966 
       CMP.I  $  2778, $  2878 
       DJN.F  $  7965, $  7964 
       CMP.I  $  4976, $  5076 
       JMP.B  >  7964, >  7962 
       CMP.I  $  5174, $  5274 
       JMP.B  $  7961, >  7960 
       CMP.I  $  3772, $  3872 
       JMP.B  $  7959, {  7960 
       CMP.I  $  1970, $  2070 
       JMP.B  <  7958, }  2019 
       CMP.I  $  2168, $  2268 
       JMP.B  $  7954, }  2217 
       CMP.I  $  3366, $  3466 
       JMP.B  $  7952, <  7952 
       CMP.I  $  3564, $  3664 
       JMP.B  $  7950, {  7950 
       CMP.I  $  4362, $  4462 
       DAT.F  $  2000, $   400 
       CMP.I  $  4560, $  4660 
       JMP.B  $  7946, {  7948 
       CMP.I  $  4758, $  4858 
       DJN.F  $  7944, $  7944 
       CMP.I  $  5756, $  5856 
       JMP.B  <  7944, >  7942 
       CMP.I  $  5954, $  6054 
       JMP.B  $  7940, >  7940 
       CMP.I  $  6352, $  6452 
       JMP.B  $  7938, }  7938 
       JMP.B  $     2, $     2 
       SUB.F  $    11, $     1 
       CMP.I  $   125, $   113 
       SLT.A  #    24, $  7999 
       DJN.F  $  7997, <  7692 
       MOV.AB #    14, $     2 
       MOV.I  $     4, >  7996 
       DJN.B  $  7999, #     0 
       SUB.AB #    14, $  7994 
       JMN.B  $  7992, $  7992 
       SPL.A  $     0, $     0 
       MOV.I  $     1, <  7996 

       ADD.AB #   100, $     2 
       MOV.I  $  7993, @     1 
       MOV.I  $  7993, @   407 
       ADD.BA $  7999, $  7999 
       MOV.I  $  7990, *  7998 
       ADD.F  $  7990, $  7997 
       MOV.I  $  7988, @  7996 
       DJN.B  $  7997, #     6 
       JMP.B  $    53, }  7700 
START  CMP.I  $   400, $   500 
       JMP.B  $  7989, }  2600 
       CMP.I  $   598, $   698 
       JMP.B  $  7986, }   647 
       CMP.I  $   796, $   896 
       JMP.B  $  7984, {  7982 
       CMP.I  $   994, $  1094 
       JMP.B  $  7982, }  7980 
       CMP.I  $  2992, $  3092 
       JMP.B  $  7980, {  7980 
       CMP.I  $  1190, $  1290 
       JMP.B  >  7978, }  1239 
       CMP.I  $  1388, $  1488 
       JMP.B  $  7975, }  1437 
       CMP.I  $  1586, $  1686 
       JMP.B  $  7973, {  7972 
       CMP.I  $  1784, $  1884 
       JMP.B  $  7971, }  7970 
       CMP.I  $  2382, $  2482 
       JMP.B  >  7970, <  7968 
       CMP.I  $  2580, $  2680 
       JMP.B  $  7967, <  7966 
       CMP.I  $  2778, $  2878 
       DJN.F  $  7965, $  7964 
       CMP.I  $  4976, $  5076 
       JMP.B  >  7964, >  7962 
       CMP.I  $  5174, $  5274 
       JMP.B  $  7961, >  7960 
       CMP.I  $  3772, $  3872 
       JMP.B  $  7959, {  7960 
       CMP.I  $  1970, $  2070 
       JMP.B  <  7958, }  2019 
       CMP.I  $  2168, $  2268 
       JMP.B  $  7954, }  2217 
       CMP.I  $  3366, $  3466 
       JMP.B  $  7952, <  7952 
       CMP.I  $  3564, $  3664 
       JMP.B  $  7950, {  7950 
       CMP.I  $  4362, $  4462 
       DJN.F  <  7950, $  7948 
       CMP.I  $  4560, $  4660 
       JMP.B  $  7946, {  7948 
       CMP.I  $  4758, $  4858 
       DJN.F  $  7944, $  7944 
       CMP.I  $  5756, $  5856 
       JMP.B  <  7944, >  7942 
       CMP.I  $  5954, $  6054 
       JMP.B  $  7940, >  7940 
       CMP.I  $  6352, $  6452 
       JMP.B  $  7938, }  7938 
       JMP.B  $     2, $     2 
       SUB.F  $    11, $     1 
       CMP.I  $   125, $   113 
       SLT.A  #    24, $  7999 
       DJN.F  $  7997, <  7692 
       MOV.AB #    14, $     2 
       MOV.I  $     4, >  7996 
       DJN.B  $  7999, #     0 
       SUB.AB #    14, $  7994 
       JMN.B  $  7992, $  7992 
       SPL.A  $     0, $     0 
       MOV.I  $     1, <  7996 
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       DAT.F  <  7958, <  7958 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 

       DAT.F  <  7958, <  7958 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 

       DAT.F  <  7958, <  7958 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 

       DAT.F  <  7958, <  7958 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 
       DAT.F  $     0, $     0 

 

The findings above, lead us to believe that it is harder to evolve more complex programs, 

considering the fact that the initial program’s evolved counterpart in generation three reverted 

back to the initial program in generation four. This is probably due to the fact that these 

programs normally have quite a substantial amount of thought behind them, and may be 

harder to find improvements on. It is important to note that in addition to this, the above 

program, is a world top-mid range program, which means that finding an evolved version of 

it could take a lot more time, ideally by also increasing the maximum amount of generations 

without improvement and population sizes. When it comes to the rating of the programs, the 

initial program obtained 1236.71 as a rating, and then increased over generations, this 

fluctuation, in this case an increase, is brought about because there is a certain factor of 

randomisation involved, as wins, ties and losses may differ even against the same immutable 

program a generated program is battling against, which is why the revert occurred in the first 

place. In this case it so happens that less battles were won at earlier stages, however this has 

nothing to do with the genetic algorithm implementation, as these ratings are purely an 

interpretation of Core War results. It is also important to note that since the reverted program 

and the evolved program have the same rating, it is highly likely that they will have close to 

equal performance in comparison to each other. 
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The following chart shows a comparison of new programs and uncompilable programs 

generated throughout all genetic algorithm generations in this particular case. 

 

 

It is important to note, that the lengthier the size of the program fed to the genetic algorithm, 

then the more uncompilable programs are generated, particularly within the first generation, 

but not limited to. The ratio for compilable to uncompilable program generation in the first 

generation, is around 1:20, where 1 is a compilable program and 20 is an uncompilable 

program. However by the end of the genetic algorithms lifetime, as shown in the chart above, 

this ratio changes slightly. The genetic algorithm stopped at generation 8 whilst battling 

programs for 71,052 times. This whole process took approximately 12 hours. 
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The following scatter chart shows the gradual growth of fitness across all generations in this 

particular occurrence. 

 

 

In a different experiment, more basic programs were used, both as an initiator and also as 

immutable programs, using the same genetic algorithm settings: 

Max Population 1000 

Elitism Count 100 

Max Iterations Without Improvement 5 

 

Initial Program Evolved (Generation 1) Evolved (Generation 2) 

Rating: 1000 Rating: 1078.29 Rating: 1136.47 

ORG      START 
START  ADD.AB #     4, $     3 

       MOV.I  $     2, @     2 
       JMP.B  $  7998, $     0 

       DAT.F  #     0, #     0 

ORG      START 
START  ADD.AB #     4, $     3 
SUB < -4728, { +5406 
       JMP.B  $  7998, $     0 
       DAT.F  #     0, #     0 

SLT > +2788, * +1060 
START  ADD.AB #     4, $     3 
       MOV.I  $     2, @     2 
       JMP.B  $  7998, $     0 
       DAT.F  #     0, #     0 

 

The initial program in this occurrence evolved twice, each by swapping out different lines 

from the initial program producing quite a significant rating increase. The genetic algorithm 

stopped at generation 7 whilst battling programs for 39,744 times. This whole process took 

approximately 8 hours. 
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In order to compare the compilable to uncompilable ratios present after successfully evolving 

a shorter, more basic, program, data has been collected to display the following pie chart: 

 

 

It is immediately noticeable that when evolving shorter programs, the compilable ratio 

increases to the point where it supersedes uncompilable programs. This, of course could 

involve many factors such as randomisation, however, since randomisation is carried out over 

the same amount of times as the previous attempt at evolving a program it is highly unlikely 

that it would affect it by a large margin such as the above 22%, which means that it is 

probably due to the size of the program being evolved. 
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As is done with the previous program, the following scatter chart shows the gradual growth 

of fitness across all generations in this particular occurrence: 

 

 

Since the evolved base code differs from the initial program, the initial program and the last evolved 

program in generation 2 have been battled against one another over 10 times in the nMars IDE, the 

following is the console result: 

 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

Evolved by Anonymous scores 0 

NewWarrior2 by Anonymous scores 3 

Results: 0 1 0 
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========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

Evolved by Anonymous scores 0 

NewWarrior2 by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

Evolved by Anonymous scores 0 
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NewWarrior2 by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ========== 

Parsing: C:\Users\Michael\Documents\Evolved.red 

Parsing: C:\Users\Michael\Documents\NewWarrior2.red 

========== Compiled 2 warriors, 0 failed ========== 

NewWarrior2 by Anonymous scores 0 

Evolved by Anonymous scores 3 

Results: 0 1 0 

========== Finished fight of 2 warriors ==========  
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5 FUTURE WORK 

5.1 PERFORMANCE IMPROVEMENTS 

5.1.1 Utilising nMars Libraries 

The current genetic algorithm implementation utilises the nMars compiler. Interaction with 

this compiler is being done through the nMars compiler’s console application, which allows 

parameters to be passed through to it to compile code and initiate battles. Since the nMars 

compiler itself does not allow the outputting of resultant data to a text file, for use in fitness 

functions, the approach to utilise the nMars compiler via C# code, had to be done via another 

step, the Windows CMD. Due to the fact that the genetic algorithm implementation, opens 

the CMD, which then opens the nMars compiler and passes in the required programs to 

battle, and then the battle results are outputted to a text file every time a battle occurs, the 

search slows down drastically, since the process will have to be halted until the file is written 

and results are processed. In order to improve performance, direct use of the nMars 

compiler’s dynamic link libraries, instead of using the console application approach, will 

drastically increase performance, due to the fact that no hard disk read/writes will be 

necessary and the entire genetic algorithms searching could be done entirely in memory. 

Further performance improvements would also be obtained since no other programs would be 

required to be opened and awaited before the searching can continue, such as the launching of 

the nMars compiler console application to determine whether a particular program is 

compilable or not. 

5.1.2 Paralellism 

At this point, the genetic algorithm implementation is single threaded and does not make use 

of multithreading or parallelism. Considering the fact that multithreading does not necessarily 

mean utilising multiple processor cores, but instead time slicing, parallelism would most 

likely, if not definitely, increase the genetic algorithm speed. This is due to the fact that 
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parallelism splits the work up on multiple CPU cores. Making use of the Task Parallel 

Library contained within the .NET Framework, allows parallelism to not only take advantage 

of the amount of cores of the system, but also utilises them to their maximum potential 

drastically increasing speeds. Implementing this improvement would have to start by 

improving the genetic algorithm framework, and then consequently implementing parallelism 

throughout the entire project, making use of locks and volatile variables where required to 

avoid object double access and inconsistencies whilst enforcing thread safety. 

5.1.3 Function Improvement 

Functions may be optimised and have their code and implementations reworked to possibly 

increase speed and efficiency. In particular a function that could be optimised is the Prepare 

Gene Pool Function (see Methodology). Since this particular function searches for similar 

code bases, by comparing each pair of programs together, and then removes all instances with 

that same code base but the one with the highest rating, the order of complexity of this 

function is  Ο(𝑛2) . In the current study, this time taken by this function to execute is 

acceptable since the gene pool has a maximum size of 1000 genomes. In larger settings 

however, it may prove to take too much time and this method should ideally be reworked, by 

possibly taking a different approach. An idea could be to possibly utilise some form of data 

structure, which would store each programs state in memory, this way these types of searches 

would not be required to be made.  

5.2 RESULT IMPROVEMENTS 

5.2.1 Tweaking Genetic Algorithm Settings 

The gene pool size (1000), and the amount of iterations without improvement (5), in the 

current implementation takes the genetic algorithm around eight hours to complete and find 

the best program across all generations. Increasing these settings could generate better 

programs, as there would be a wider range of programs in the population, in addition to 
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allowing the genetic algorithm to continue searching for longer after no improvement has 

been found. Currently, producing results takes a substantial amount of time and it would 

make sense to utilise libraries instead of launch processes via the nMars compiler each and 

every time. Larger programs will of course still take longer to evolve over generations, due to 

the combinatory processes involved both in Cartesian product used in addition to its random 

selection and program compilability occurrences. 

5.2.2 Different Genetic Algorithms 

Different genetic algorithm implementations have been researched, and are analysed in the 

literature review. Implementing different genetic algorithms could improve results and might 

generate better programs. For instance, a possible alternate implementation is based on 

adaptive simulated annealing genetic algorithm in place of the current simulated annealing. 

While the temperature in the simulated annealing is monotonic decreasing, the temperature in 

the adaptive simulated annealing algorithm can increase and decrease, allowing for a wider 

search that improves the chances of generating better programs. Experimenting with different 

genetic algorithm implementations could also shed light on which algorithm is the best 

algorithm overall in solving such a problem. 
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6 CONCLUSIONS 

6.1 INFORMATION YIELDED 
The most important information that this dissertation has yielded is the confirmation that 

genetic algorithms and evolutionary programming practices have the possibility of being very 

effective in evolving program source code. This dissertation has also shed a great deal of 

insight on how evolutionary algorithms can be adapted to different situations, particularly in 

the sense of different algorithms available and their characteristics, in addition to tweaks and 

approaches that can be made to allow such algorithms to cater for the abstract problems at 

hand, considering the fact that a genome can be of any type. Through the dissertation’s 

research, comparison of different techniques has also paved the way for building a genetic 

algorithm suitable for the task at hand, where these techniques have also been aided by 

justifications and assertions on practices that work, against practices which do not work as 

well in cases where genetic algorithms may be utilised.  In addition to the above, the 

dissertation’s program has also been able to generate evolved programs, which through them, 

has allowed performing result analysis, shedding insight on what needs to be improved to 

enable better evolved programs, speed and performance. 

6.2 RESULT SUMMARISATION 
The results generated via the genetic algorithm appear to indicate that source code can be 

effectively evolved. In addition to this it appears that very efficient programs as initiators do 

not evolve very well as opposed to those programs which are not that suited or good. Results 

have also shown that there appear to be less uncompilable programs generated if the program 

to be evolved is smaller. Considering the fact that the peak has been found within the first 

three generations, as per the results, it could be useful to make use of adaptive simulated 

annealing practices to better these particular searches. 
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6.3 RESULT USAGE 
Since these results confirm that program source code can be evolved effectively via genetic 

algorithms, individuals can then utilise similar techniques to attempt to evolve programs that 

pertain to a particular task, or are of similar nature, to accomplish various specific, real life 

tasks. These results may also aid individuals when to creating their own genetic algorithm 

based optimisation techniques on source code and adding fitness functions for optimisation 

purposes, such as code length versus efficiency, and so on. 
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